

Although this lient-server mode of web servie interation is a powerful

extension to the monolithi model, it an involve a onsiderable amount

of network traÆ for appliations that require intensive dialogue with a

remote servie. Furthermore, lients with limited resoures or onnetivity

are not always the most appropriate plae to exeute ode that interats

with a remote servie.

The basis of the Remote Evaluation [26℄ model (also termed Remote

Exeution, or just RE) is that servie providers aept programs from third-

party lients and host the exeution of the ode themselves. This extends

the RPC style by allowing ode to be pakaged and sent to a server, rather

than simply supplying data with a request for the server to exeute its

own ode.

to them as their unique entry point.

Sine the funtionality of a servie objet is aessed through its meth-

ods, we an ontrol the behaviour of lient programs that use the servie

by enabling or disabling the availability of eah servie API method dy-

namially. This is depited in the diagram of Figure 2 using the \swith"

metaphor. For example, we an impose a rate-limiting poliy on a a

modal, in the sense that the invoation of a modal method on some

objet an only proeed if the objet is urrently in the abstrat state

named in the lause.

� Eah objet of a lass that ontains modal methods maintains a no-

tion of whih abstrat states it is urrently in. For example, the Net-

workAess lass in Figure 2 has modal methods naming an abstrat

state alled ALLOW NET and eah NetworkAess servie objet will

reord whether it is presently in the abstrat ALLOW NET state or

not.

� The transitions between being in some abstrat state and not are driven

by an external poliy rather than the objet itself. The language sup-

ports the de�nition of poliies, that determine when an objet should

enter or leave an abstrat state. The onditions undersd
(2Tj
-409.0602 0 Td
(trans9(only)Tj
30.7(v)2999.27(o4.4v)2999itions)Tj
68.3598 0 Td
9nly)Tj
30.72.8 0 Td
[((b)3001.32.24Tj
68.bas 0 Td
(alled)Tj
39
52.2 0 Td
(an)Tj
19
65.4 01d
(is)Tj
14.8v)0 Td
92
23i.2 0 Td
[(N3001.3(6
(an)Tj
25.6199 0 Tdter)℄TJ
37.f0 TorsTd
(e49d
(of)Tj
16.9s84 0 Td
(in)Tj
expln)2 0 Td
624Tj
68.2402 0 Td
(8d)Tj
-388.68 (S)-6 Td
(de49dter)℄TJ
37.4797 Td
(not.)Tj
/R3566(32.24f
-98.0398 25.9199 Td
(�)Tj
/R34 0.12 Tf
12.2Cli.8801 Td98(ti)3001.
(of)Tj
10 Td
[(metho(v)29990eed)℄TJ
51.6402 0 TTd
n)Tj
36.8ttempts84 0.69lass)Tj
33.8o84 0 59(ds)℄TJ
5199 0 Td
[(in)3000.08(k 0 Td
[(Ne36.83f1
7(of)Tj
17.1602 01.
(of)Tj
1602 0 Td
[(mo)-2999.21tions)Tj
68.0598 0 Td
[(metho2999.29(that)Tj
31.J
42 0 T2strat)Tj
54.6801 0 Td
(2(is)Tj
14.8809 0 Td
[(pro)-3001.30d
(it)Tj
14.2f02 0 T2(en)℄TJ
-39.4801 0 T3tions)Tj
68.target Td
(states)Tj.7602 0 Td
[(ob)-6999.411ition)Tj
62.8801 0 2tratasersomeabsttion

meth2.8 0 Td
[(r2999.29(9ion)Tj
62.5199 0 Td69(d)Tj
-401.64 17.8801 Td
8 0 Td
ethy-3001.3d
(402.TJ
36.2402 0 (n
(or)Tj
18.81of)Tj
16.39
36.8339(only)Tj
30.7li.88j
16.39)-3001.27(dal)℄TJ
42.3598 0 Td
t)Tj
53.199dl0 Td
(Figure)Tj
44.5602 0 Td
[(mo)-2999.27alled invoajetprool63eing

2 Modal Methods and Abstrat States

The primary purpose of the JPoliy extensions is to enable servie hosts to

ontrol when the methods in their Java servies an be alled. Sine the

funtionality of a servie is aessed by invoking its methods, then we an

enable or disable the use of partiular servie funtionality by seletively

bloking the invoation of a method in that servie. This allows the servie

host to ontrol what

a yes/no ag, so e.g. a SearhEngine objet is either in the CAN SEARCH

abstrat state or it is not. The atual meaning of the abstrat state, in

terms of when individual objets are in the state is determined by the

poliy assoiated with an objet | this is explained below in Setion 4.

Sine a lass may ontain several modal methods, eah with a when

lause potentially naming di�erent abstrat state names, the result is a set

of independent abstrat states. Eah objet of that lass maintains a notion

of its urrent ombined status: whih abstrat states it is presently in, and

whih it is not. This status then ontrols the availability of methods,

beause the deision to allow a method all of a modal method to proeed

is determined by whether the target objet is in the relevant abstrat state

at that moment. A related issue here is that, in our urrent design, only

instane methods an be modal | we do not allow Java's stati methods

to have when lauses. This is beause the abstrat state is a property

of individual objets, but stati methods are not invoked with respet to

any spei� objet. We ould extend the language to allow stati modal

methods, by assoiating the stati abstrat state with the lass itself, in

a similar way to Java synhronization on stati method alls where the

lass's lok is used.

In terms of the diagram in Figure 2, the abstrat state is the \swith"

that manipulates the handling of method invoations. As shown in the

NetworkAess servie, more than one modal method's when lause an

refer to a partiular abstrat state. In that ase, the availability of all those

modal methods is tied together: either they are all enabled or all disabled.

It is the task of servie programmers when adding when lauses to make

this deision about whih modal methods should be ontrolled by whih

abstrat state names.

An important feature of our design is that objets do not ontrol the

status of their set of abstrat states, rather this is the responsibility of

separate poliies. An objet enters or leaves an abstrat state when its

assoiated poliy ditates. We disuss the de�nition and use of poliies in

Setion 4.

9

result of the modal method all if the invoation proeeds immediately,

and its sope is only within the following ode blok. If the query method

is swithed o� due to the urrent abstrat state of the searhServie

objet then the aller will not blok, but the method all and ode blok

will be skipped and exeution ontinues after the blok. Another use of

this onstrut is to allow a seond blok of alternative ode to be exeuted

in the ase of the modal method all not proeeding:

try Vetor results=searhServie.query("some terms") {

// ode blok using the results value

}

else {

// alternative ode blok (results not in sope here)

}

Here, the alternative blok is exeuted if the query all annot proeed

immediately. The third variation of this onstrut simply inludes a mil-

liseond timeout lause to the modal method invoation attempt:

try for 100 Vetor results=searhServie.query("some terms") {

// as before

}

In this form, if the objet's abstrat state hanges to re-enable the method

within the spei�ed tTj
51.7199 0 Td
[(ob)vothe

inotth8(sop)-2999.9℄TJ
18.7203ne�t 0 Td
(A9)Tj
15.9602 0 Td
(to)Tj
16.560202 0 Td
(f)Tj
11.2801.4 0 Td
(to)This

As explained above, the entral onept in our work is the abstrat

state of an objet, whih is reeted in the set of named abstrat states

that appear in modal method when lauses. The availability of a modal

method is ditated by the urrent status of the target objet's assoiated

abstrat state. As Figure 2 shows, the role of poliies in JPoliy is to

ause hanges in the abstrat state of objets, whereas the servie objets

themselves only examine the status and do not hange it. This separation of

onerns means that poliies are not hard-wired into the servie ode itself.

Abstrat states at as the intermediary: individual poliies determine when

to hange an objet's abstrat state, and the objet reads this status when

deiding whether to allow a method invoation to proeed. Consequently,

the job of the poliy delaration onstrut we have inluded in JPoliy is

to de�ne exatly when an objet is in an abstrat state and when it is not.

4.1 Poliy Spei�ation

In the JPoliy language we extend the Java syntax with a top level on-

strut for speifying a poliy. Therefore a ompilation unit of Java ode

ontains a list of lass, interfae and poliy de�nitions. Our model of a

poliy is in the form of a labelled transition system | essentially a �nite

state automaton, onsisting of a set of onrete states with transitions be-

tween them. The poliy de�nition delares the name of the lass for whih

it an be used, then spei�es the sets of its onrete states that orrespond

to eah abstrat state of objets of that lass. The general form of a poliy

spei�ation is as follows:

poliy PoliyName for ClassName {

-> initialConreteState

transition onreteState1 -> onreteState2 when (onditionA)

transition onreteState2 -> onreteState3 when (onditionB)

...

ABSTRACT_STATE_X when { list of onrete states }

ABSTRACT_STATE_Y when { list of onrete states }

... // for eah named abstrat state delared in ClassName

}

12

lass SearhEngine {

Vetor query(String searhTerm) when CAN_SEARCH { ... }

}

poliy BoundedQueries (int bound, int interval) for SearhEngine {

int redits = bound;

-> some;

// Every time we all the method, the ounter derements...

transition some -> some when (query)

{ redits = redits-1; }

// Until none are left...

transition some -> none when (redits <= 0);

// Then the ounter is replenished at next time interval

transition none -> some when ((TimeServie.now % interval)==0)

{ redits = bound; }

CAN_SEARCH when { some }

}

Figure 3: Example Poliy Spei�ation

The partiular onrete states and transitions of these automata reet the

spei� nature of eah poliy. For example, suppose we are speifying a

Google-like Web Servies poliy that a ertain modal method in a servie

an only be invoked a limited number of times in some time period. The

poliy may have two onrete states, to represent whether the all limit

has been reahed or not, and transitions between these based on a method

all ounter and a time event. Figure 3 shows how this poliy an atually

be written using the JPoliy syntax.

To assist in the onstrution of poliies suh as the all limiter outlined

above, whih involves ounting, poliy spei�ations an inlude loal vari-

ables that may be updated using a limited expression language. Without

this faility, poliies that need to implement ounters would have to spe-

ify states to reord a ount total, whih beomes tedious and repetitive.

13

Figure 3 shows a loal variable named redits that ounts how many alls

an still be made before the limit is reahed. Updating of loal variables,

suh as inrementing one used as a ounter, is enabled by the addition of

an optional lause in transition spei�ations. This lause, shown in braes

at the end of a transition delaration, simply lists poliy variable updates

| it is not arbitrary Java ode.

A further enhanement of the poliy onstrut is that it an be param-

eterised by values, muh like the way a Java lass an be parameterised

by having its onstrutor delare a list of formal parameters. A poliy's

named parameters an be used to initialise its loal variables. In Figure 3

the BoundedQueries poliy has been parameterised by the all limit and

the time interval, rather than having these hard wired into the transitions.

The desriptions above outline the general form of the poliy onstrut,

but the utility and expressiveness of poliies is determined mainly by the

ontent of the boolean onditional expressions used to label transitions.

In Figure 3, the BoundedQueries poliy illustrates the use of

transitions.

Poliy loal variables Poliies an delare a number of mutable loal

variables, and these an be referred to in transition onditions. These

variables an be updated by assigning new values when a transition

ours.

Poliy parameters The named parameters of a poliy an be onsidered

as unhanging loal variables, like final method parameters in Java.

The example poliy uses the interval poliy parameter in

deny lients the ability to hange the poliy assoiated with these objets.

Clearly, if lients ould replae the poliies attahed to servie objets

then they an subvert the host's ontrol on servie usage | thus defeating

the purpose of poliy-based ontrol. In JPoliy, we an prevent this by

restriting the ability to hange an objet's poliy to the servie provider

only. This is ahieved by using a Java interfae type for the lient's view of

a servie, and onstraining the semantis of the poliy assignment onstrut

so that it an only be used to hange the poliy of an objet that is handled

through a variable of lass type.

pattern of translation for a modal method suh as:

publi Vetor query(String searhTerm) when CAN_SEARCH {

// original method body

}

is to generate this set of three Java methods:

private Vetor query_ORIGINAL(String searhTerm) {

// Notify the urrentPoliy that the method has been

// invoked, then...

// exeute the original method body

}

publi Vetor query(String searhTerm) {

// Blok waiting for the objet to be in the CAN_SEARCH

// abstrat state, then...

return this.query_ORIGINAL(searhTerm);

}

publi Vetor query_ATTEMPT(int timeout, String searhTerm)

throws MethodUnavailableExeption {

// Wait at most timeout milliseonds for the objet to be

// in the CAN_SEARCH abstrat state, then...

if (/* objet is now in the abstrat state */)

return this.query_ORIGINAL(searhTerm);

else

throw new MethodUnavailableExeption();

}

We use standard Java synhronization features to implement the waiting

for abstrat states | this avoids a busy wait loop by putting the alling

thread to sleep until the poliy objet noti�es the thread that the abstrat

state has hanged. Sine the set of abstrat states is atually stored in the

poliy objet, the servie objet uses its urrentPoliy instane �eld to

request the urrent status of an abstrat state.

18

unknown and untrusted third parties, and therefore wish to protet their

mahines from maliious, greedy or poorly-written programs. There are a

number of existing tehniques that address this issue of program behaviour

ontrol:

This approah has been used in Ative Network systems[1, 20℄ to limit

the aess of mobile ode to resoures on the network node. Work on

mobile Java ode agents[17℄ protets servies by narrowing the view of

a servie interfae, whih prevents lient ode from linking to ertain

methods. When a program is dynamially linked before exeution,

all external dependenies are mathed up with the library modules

that provide these failities. A servie host an use seurity poliies

to ontrol the linking proess and thereby deny aess to partiular

servies, or perhaps link against di�erent implementations of a library

depending on the required level of funtionality. Here, a limitation

ode that is aessing the servie. Furthermore, our design does not require

the lients to be written using the extended language | lient ode in plain

Java an still use poliy-ontrolled servies.

Our design involves a relatively simple and intuitive extension to the

Java programming model, whereby programmers annotate those methods

for whih aess ontrol is required. The poliies that ontrol this aess

are spei�ed using the familiar model of a

Appendix: Generated Code

The following simple servie lass and poliy (from Figure 3) are used to

demonstrate the form of the generated Java ode. The JPoliy soure ode

is:

lass SearhEngine {

Vetor query(String searhTerm) when CAN_SEARCH {

return new Vetor();

}

}

poliy BoundedQueries (int bound, int interval) for SearhEngine {

int redits = bound;

-> some;

transition some -> some when (query) { redits = redits-1; }

transition some -> none when (redits <= 0);

transition none -> some when ((TimeServie.now % interval)==0)

{ redits = bound; }

CAN_SEARCH when { some }

}

From this soure, the following Java ode is produed by our ompiler:

lass SearhEngine extends java.lang.Objet {

stati SearhEngine.Poliy defaultPoliy = new SearhEngine.Poliy();

publi SearhEngine.Poliy urrentPoliy = SearhEngine.defaultPoliy;

Vetor query(String searhTerm) {

if (! (this.urrentPoliy.get(0)))

synhronized (this.urrentPoliy) {

while (! (this.urrentPoliy.get(0)))

try { this.urrentPoliy.wait(); }

ath (InterruptedExeption CAUGHT_EXCEPTION) { }

}

else { }

return this.query_ORIGINAL(searhTerm);

}

Vetor query_ATTEMPT(int timeoutMillis, String searhTerm)

throws MethodUnavailableExeption {

if (timeoutMillis != 0 && ! (this.urrentPoliy.get(0)))

25

synhronized (this.urrentPoliy) {

try { this.urrentPoliy.wait(timeoutMillis); }

ath (InterruptedExeption CAUGHT_EXCEPTION) { }

}

else { }

if ((this.urrentPoliy.get(0)))

return this.query_ORIGINAL(searhTerm);

else throw new MethodUnavailableExeption();

}

private Vetor query_ORIGINAL(String searhTerm) {

this.urrentPoliy.query_METHOD_CALLED();

return new Vetor();

}

stati lass Poliy extends java.lang.Objet {

publi boolean get(int state) {

return true;

}

publi void query_METHOD_CALLED() { }

}

}

publi lass BoundedQueries extends SearhEngine.Poliy

implements TimeServie.now_LISTENER {

private int redits;

private java.util.BitSet abstratStates = new java.util.BitSet(1);

private int onreteState;

private final SearhEngine TARGET;

private final int bound;

private final int interval;

private synhronized void DO_TRANSITION_0() {

{

this.redits = this.redits - 1;

}

if (this.redits <= 0) {

this.DO_TRANSITION_1();

return ;

} else { }

}

private synhronized void DO_TRANSITION_1() {

TimeServie.ADD_LISTENER_FOR_now(this);

{ }

this.onreteState = 1;

this.abstratStates.lear(0);

26

this.notifyAll();

}

private synhronized void DO_TRANSITION_2() {

TimeServie.REMOVE_LISTENER_FOR_now(this);

{

this.redits = this.bound;

}

this.onreteState = 0;

if (this.redits <= 0) {

this.DO_TRANSITION_1();

return ;

} else { }

this.abstratStates.set(0);

this.notifyAll();

}

publi synhronized void query_METHOD_CALLED() {

if (this.onreteState == 0) this.DO_TRANSITION_0(); else { }

}

publi synhronized void TimeServie_UPDATED_WATCHABLE_now() {

if (this.onreteState == 1 &&

((TimeServie.now % this.interval) == 0))

this.DO_TRANSITION_2(); else { }

}

publi stati BoundedQueries makePoliy(SearhEngine TARGET,

int bound,

int interval) {

return new BoundedQueries(TARGET, bound, interval);

}

publi boolean get(int state) {

return this.abstratStates.get(state);

}

private BoundedQueries(SearhEngine TARGET,

int bound,

int interval) {

this.TARGET = TARGET;

this.bound = bound;

this.interval = interval;

this.redits = this.bound;

this.onreteState = 0;

this.abstratStates.set(0);

if (this.redits <= 0) this.DO_TRANSITION_1(); else { }

}

}

27

Referenes

[1℄ D. S. Alexander, Paul B. Menage, W. A. Arbaugh, A. D. Keromytis,

K.G. Anagnostakis, and J. M. Smith. The Prie of Safety in an A-

tive Network. IEEE/KICS Journal of Communiations and Networks

(JCN), Marh 2001.

[2℄ Amazon. Web Servies, 2003. Online doument http://www.amazon.

om/gp/aws/landing.html.

[3℄ A. D. Birrell and B. J. Nelson. Implementing remote proedure alls. In

Proeedings of the ACM Symposium on Operating System Priniples,

1983.

[4℄ Lua Cardelli. Abstrations for mobile omputation. In Seure Internet

Programming, pages 51{94, 1999.

[5℄ Yoonsik Cheon and Gary T. Leavens. A runtime assertion heker for

the Java Modeling Language (JML). In International Conferene on

Software Engineering Researh and Pratie (SERP '02), June 2002.

[6℄ M. Covington, M. Moyer, and M. Ahamad. Generalized role-based

aess ontrol for seuring future appliations. In 23rd National Infor-

mation Systems Seurity Conferene, Baltimore, MD, Otober 2000.

[7℄ Karl Crary and Stephanie Weirih. Resoure bound erti�ation. In

Proeedings of the 27th ACM SIGPLAN-SIGACT Symposium on Prin-

iples of Programming Languages (POPL-00), pages 184{198. ACM

Press, January 2000.

[8℄ Niodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Slo-

man. The Ponder Poliy Spei�ation Language. Leture Notes in

Computer Siene, 1995:18{38, January 2001.

[9℄ Robert DeLine and Manuel F�ahndrih. Enforing High-Level protools

in Low-Level software. In Proeedings of PLDI-01, volume 36(5) of

ACM SIGPLAN Noties, pages 59{69, June 2001.

28

[20℄ Paul Menage. RCANE: A Resoure Controlled Framework for Ative

Network Servies. In Proeedings of the First International Working

Conferene on Ative Networks (IWAN '99), volume 1653, pages 25{

36. Springer-Verlag, 1999.

[21℄ J. Gregory Morrisett, Karl Crary, Neal Glew, and David Walker.

Stak-based typed assembly language. Journal of Funtional Program-

ming, January 2002.

[22℄ R. Pandey and B. Hashii. Providing �ne-grained aess ontrol for

mobile programs through binary editing. Tehnial Report TR-98-08,

UC Davis, 1998.

[23℄ Fred B. Shneider. Enforeable seurity poliies. Information and

System Seurity, 3(1):30{50, 2000.

[24℄ Beverly Shwartz. Introdution to spanner: Assembly

[30℄ I. Wakeman, A. Je�rey, T. Owen, and D. Pepper. Safetynet: A

language-based approah to programmable networks. Computer Net-

works and ISDN Systems, 36(1):101{114, 2001.

[31℄ D. Wetherall, J. Guttag, and D. Tennenhouse. Ants: A toolkit for

building and dynamially deploying network protools, 1998.

[32℄ WWW Consortium (W3C). Web Servies Ativity, 2003. Online spe-

i�ation douments

