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threads P ;Q; R are similar to proesses in the Pialulus in that they

an reeive and send values on loal hannels; the types of these hannels

indiate the kind of values whih may be transmitted. Loations may be

dynamially reated. For example in

lJ(newlo k : K)withC in xpt

1

!hki j xpt

2

!hkiK

a new loation k is reated at type K, the ode C is installed at k and

the name of the new loation is exported via the hannels xpt

i

. Loation

types are similar to reord types, their form being

lo[

1

: C

1

; : : : 

n

: C

n

℄

This indiates that the hannels, or resoures, 

i

at types C

i

are available

at the loation. So for example K above ould be

lo[ping : rwhPi; �ng : rwhFi℄

indiating that the servies ping and �ng(er) are supported at k; r indiates

the permission to read from a hannel, while w indiates the permission

to write to the hannel. However the types at whih k beomes known

depends on the types of the exporting hannels. Suppose for example

these had the types

xpt

1

: whlo[ping : whPi℄
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by programming the presene or absene of ports, the site l an ontrol

the immigration of ode.

E�etively we have replaed unonstrained spawning
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the type

Fdep(y : whTi�k! pr[info : rhTi�here; y : whTi�k℄)

the host an instantiate the inoming sript with some hannel loated

at the site k, on whih it has write permission, and the running ode is

restrited to writing there, and reading from a loal hannel alled info.

Note that in both these examples the loation k is built into the sript

types. Thus a server with an aess port at this type would only
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partiipate in them. As a simple example onsider the system

lJ(new  : C) (xpt!hi j ?(x)Q)K

in an environment in whih the export hannel xpt an only send hannels

with the read apability. The environment will reeive  along xpt but will

not be able to transmit on . Consequently the potential input ations on

 by the proess above will not be possible.

Following [9, 8℄ we replae the untyped ations in (1) with typed ations

of the form

I �M

�

�! I

0

�M

0

where M is the system being observed while I is a onstraint on the ob-

serving environment representing its knowledge of the system M . Ations

hange both the proesses and the environment in whih they are being

observed. This will lead, in the standard manner, to a oindutively de-

�ned, bisimulation-based, relation between systems, whih we denote by

I j= M �

bis

N

In our seond main result of the paper, we prove that this oindutive rela-

tion oinides with a naturally de�ned ontextual equivalene. One of the

features of our approah is the expliit representation of the information

whih the environment an obtain from systems through testing with on-

texts. In suh a highly onstrained setting as this, this beomes a genuine

aid in understanding the equivalene. This is the topi of Setion 6.

This report ends, in Setion 7, with some onlusions and a brief survey

of related work.

2 The language safeDpi

Syntax: The syntax, given in Figure 1, is a slight extension of that of

Dpi from [8℄. It is expliitly typed, but for expository purposes we defer

the desription of types until Setion 3. The syntax also presupposes a

general set of hannel names Names, ranged over by n;m, and a set

of variables Vars ranged over by x; y. Identi�ers, ranged over by u;w,

may ome from either of these sets. Names is partitioned into two sets,

Los ranged over by k; l; : : : for loations, and Chans ranged over by

a; b; ; : : : for hannels. There is also a distinguished subset of hannels

alled ports, and ranged over by p; q; : : : , whih are used to handle higher-

order values. Similarly we will sometimes use �; �

0

for variables whih will

be instantiated by higher-order values.

The syntax for systems, ranged over by M;N;O, is the same as in

Dpi, allowing the parallel omposition of loated proesses lJP K, whih

may share de�ned names, using the onstrut (new e : E)�.
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often use F to indiate an arbitrary sript, whereas v will be reserved for

the individual omponents in a tuple V ; thus it will represent either an

identi�er or a sript. Of partiular interest to us will be tuples of the form

(~v; F ) whih will be interpreted as dependent values ; intuitively the sript

F depends on the values ~v.

At the risk of being verbose, the syntax has expliit notations for the

various forms of names whih an be delared. In (new  : C) P a new

loal hannel named  is delared, while (newregn : N) P represents the

generation of a new globally registered name n for hannels; see [8℄ for mo-

tivation. When a new loation is delared, in (newlo k : K)withQ in P ,

its delaration type K an only involve hannel names whih have been

registered. This onstrut generates the new loation k, sets the ode Q

running there, and in parallel ontinues with the exeution of P . This

spei� onstrut for new loations is required sine ode may only be

exeuted at a loation one entry has been be gained via a port; so here

Q represents the ode with whih the loation is initialised.

The main novelty in safeDpi, over Dpi, is the onstrut

goto

p

k:F

Intuitively this means: migrate to loation k via the port p with the ode

F . Our type system will ensure that F is in fat a sript with a type

appropriate to the port p; moreover entry will only be gained if at the

loation k the port p is urrently ative.

The various binding strutures, for names and variables, gives rise

to the standard notions of free and bound ourrenes of identi�ers, �-

onversion, and (apture-avoiding) substitution of values for identi�ers

in terms, Pfj

v

=ujg; this is extended to patterns, Pfj

V

=Xjg in the standard

manner. We omit the details but three points are worth emphasising.

The �rst is that many suh substitutions may give rise to badly formed

proess terms but our typing system will ensure that this will never our

in well-typed terms. The seond is that identi�ers may our in our types

and therefore we require a notion of substitution into types; this will be

explained in Setion 3. Finally terms will be identi�ed up to �-equivalene,

and bound identi�ers will always be hosen to be distint, and di�erent

from any free identi�ers.

In the sequel we use system to refer to a losed system term, that is

a system term whih ontain no free ourrenes of variables; similarly a

proess means a losed proess term.
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Redution Semantis: This is given in terms of a binary relation be-

tween systems

M �! N

and is a mild generalisation of that given in [8, 10℄ for Dpi.

Definition 2.1 (Contextual relations). A relation R over systems

is said to be ontextual if it preserves all the system onstrutors of the

language; that is M RN
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(r-omm)

kJ!hV iK j kJ?(X : T)P K �! kJPfj

V

=XjgK

(r-split)

kJP jQK �! kJP K j kJQK

(r-n:reate)

kJ(newregn : N) P K �! (new n : N) kJP K

(r-move)

kJgoto

p

l:F K �! lJp!hF iK

(r-l:reate)

kJ(newlo l : L)withC in P K �! (new l : L)(kJP K j lJCK)

(r-:reate)

kJ(new  : C) P K �! (new  : C�k) kJP K

(r-unwind)

kJP K jM �!M

0

kJ�P K jM �! kJ�P K jM

0

(r-eq)

kJif u = u then P else QK �! kJP K

(r-beta)

kJ(� (ex :

e

T
): P )(ev)K �! kJPfj

ev

=exjgK

(r-neq)

kJif u = vthen P else QK �! kJ Q
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at this type then it an transmit values of at most type T

w

along it

and reeive from it values whih have at least type T

r

. In the formal

desription of types there will be a subtyping onstraint, that T

w

must

be a subtype of T

r

, explained in detail in [19℄. When the transmit

and reeive types oinide we abbreviate this type by rwhTi. We also

allow the types whT

w

i and rhT

r

i, whih only allow the transmission,

reeption respetively, of values.

Global resoure name types, ranged over by N: These take the form

rhCi, where C is a hannel type. Intuitively these are the types of

names whih are available to be used in the delaration of new loa-

tions. They allow an individual resoure name, suh as print, to be

used in multiple loations, resulting in a form of dynami typing.

Loation types, ranged over by K; L: The standard form for these is

lo[u

1

: C

1

; : : : ; u

n

: C

n

℄

where C

i

are hannel types, and the identi�ers u

i

are distint. An

agent possessing a loation name k with this type may use the han-

nels/resoures u

i

loated there at the types C

i

; from the point of view

of the agent, k is a site whih o�ers the servies u

1

; : : : u

n

at the orre-

sponding types. In the formal de�nition we will require eah u

i

to be

already delared as a global resoure name. If n is zero then the agent

knows of the existene of k but has no right to use resoures there. We

abbreviate this trivial type from lo[℄ to lo. We also identify loation

types up to re-orderings.

Proess types, ranged over by �. The simplest proess type is pro,

whih an be assigned to any well-typed proess. More �ne-grained

proess types take the form

pr[u

1

: C

1

�w

1

; : : : u

n

: C

n

�w

n

℄

where the pairs (u

i

; w

i

) are assumed to be distint. A proess of this

type an use at most the resoure names u

i

at the loation w

i

with

their spei�ed types C

i

; these types determine the loations at whih

the hannels u

i

may be used.

Sript types, ranged over by S: The general form here is

Fdep(~x :

~

T!�)

Sripts of this type require parameters (~v) of type (

~

T); when these are

supplied the resulting proess will be of type �fj

~v

=~xjg. In other words the

type of the resulting proess may in general depend on the parameters.

In these types we allow � to ontain ourrenes of a speial loation
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� x : hT with ~y :

~

Ei. This represents a pakage, whih will be used to

handle existential types. Intuitively this de�nes the assoiation x : T

but the type T may depend on the auxiliary assoiations ~y :

~

E.

Lists of assumptions are reated dynamially during typeheking, typ-

ially by augmenting a urrent environment with new assumptions on

bound variables. It is onvenient to introdue a partiular notation for

this operation:

Definition 3.2 (Forming environments). Let fV : Tg be a list of

type assumptions de�ned by

� fv : C�wg = v : C�w

� fx : Sg = x : S

� fv : lo[u

1

: C

1

; : : : u

n

: C

n

℄g = v : lo; u

1

: C

1

�v; : : : u

n

: C

n

�v

� f(~y; x) : Tdep(~y :

~

E)Tg = fy

1

: E

1

g : : : ; fy

n

: E

n

g; fx : Tg

� fx : Edep(~y :

~

E)Tg = x : hT with fy

1

: E

1

g : : : ; fy

n

: E

n

gi �

Of ourse there a lots of other possibilities for V and T but only those

mentioned give rise to lists of assumptions. Moreover even those given

may give rise to lists whih are not onsistent. For example we should

not be able to introdue an assumption u : lo if u is already designated

a hannel, or introdue u : C�w unless w is known to be a loation. Sine

type expressions also use identi�ers, before introduing this assumption

we would need to ensure that C is a properly formed type; for example it

should only use identi�ers whih are already known. In order to desribe

the set of valid environments we introdue judgements of the form

� ` env

The inferene rules are straightforward and onsequently are relegated to

the appendix, in Figure 10. We also relegate to there the de�nition of

subtyping judgements, of the form

� ` T <: U;

given in Figure 11. Again the rules are straightforward, and mostly inher-

ited from [8℄. However it is worth noting that proess types are ordered

di�erently than loation types. For example we have

� ` pr[u

1

: C

1

�k℄ <: pr[u

1

: C

1

�k; u

2

: C

2

�l℄

but

� ` lo[u

1

: C

1

; u

2

: C

2

℄ <: lo[u

1

: C

1

℄
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assuming, of ourse, that the various types used, C

i

;C

j

are well-de�ned

relative to �.

These rules have been formulated so that they an also be used to say

what is a valid type relative to a type expression.

Definition 3.3 (Valid types). We say the type expression T is a valid

type relative to �, written � ` T : ty, whenever we an derive the judge-

ment � ` T <: T. �

Types an be viewed intuitively as sets of apabilities and unioning these

sets orresponds to performing ameet operation with respet to subtyping.

This we now explain. Let (D;�) be a preorder. We say a subset E � D

is lower-bounded by d 2 D if d � e for every e in E. Upper bounds are

de�ned in a similar manner.

Definition 3.4 (partial meets and joins). We say that the preorder

(D;�) has partial meets if every pair of elements in D whih has a lower

bound also has a greatest lower bound. This means that for every pair of

elements d

1

; d

2

in D whih has some lower bound, that is there is some

element in d 2 D suh that d � d

1

; d � d

2

, there is a partiular lower

bound, denoted d

1

u d

2

whih is less then or equal to every lower bound.

The upper bound of pairs of elements, d

1

t d

2

is de�ned in an analogous

manner. �

Let Types

�

denote the set of all type expressions T suh that � ` T : ty.

Theorem 3.5. For every �, the set Types

�

, ordered by <:, has partial

meets and partial joins.

Proof: See Proposition A.2 in Appendix A �

Intuitively the existene of T u U means that T and U are ompatible, in

that they allow ompatible apabilities on values at these types. Moreover

the type TuU may be viewed as a unioning of the apabilities allowed by

the individual types.

It is worth pointing out that with our type expressions set Types

�

turns out to be not only a preorder but also a partial order. However this

would no longer be the ase if we allowed reursive types; nevertheless

with this extension our results would still apply. Note also that beause

of the existene of the top type >, useful in Setion 6, joins of types are

always guaranteed to exist.

3.3 Type Inferene

We are now ready to desribe the type inferene system for ensuring that

systems are well-typed.
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(ty-gnew)

�; n : rhCi ` M

� ` (new n : rhCi)M

(ty-new)

�;  : C�k ` M

� `
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types we need to invent a new kind of value h~v; vi; these do not our in

the language safeDpi, and are only used by the type inferene system;

intuitively h~v; vi is a pakage onsisting of the value v together with the

witnesses ~v, whih provide evidene (for the type inferene system) that

v has it's required type. The rule (ty-EDep), whih might also be alled

(ty-Pak), allows us to onstrut suh values. It is similar to the rule for

dependent tuples. The pakage h~v; vi an be assigned the type Edep(~x :

~

E)T

provided we an establish that v

i

an be assigned the type v

i

: E

i

fj

~v

=~xjg

and v the type Tfj

~v

=~xjg. Dependent tuples an be deonstruted and their

omponents aessed in the standard manner; see the fourth lause of

De�nition 3.2. However the orresponding deonstrution for existential

types only allows aess to the �nal omponent, and not the witnesses;

(ty-Unpak) allows the value, rather than the witnesses, to be extrated

at the appropriate type from the pakage. Similarly (ty-Elookup) only

allows knowledge of the value, and not the witnesses, to be dedued from

an existential assumption.

In Figure 7 the rules for name generation, (ty-newhan),(ty-newlo)

and (ty-newreg), are simple adaptations of the orresponding rules at

the system level; note that in (ty-newlo) we are guaranteed that the

new name k does not our in the type �, beause rules at(-newlo) ty
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whih in turn follows from

�; fx : L

p

g `

r

goto

in

x:ping!hvi : pro

This is a onsequene of applying the typing rule (ty-go) to the judgement

�; fx : L

p

g `

x

in!hping!hvii : pro (6)

The type environment �; fx : L

p

g takes the form

�; x : lo; in : whthunki�x; ping : whV

p

i�x

Therefore (6) follows from an appliation of the simple form of the output

rule (ty-out), provided we an establish

�; x : lo; in : whthunki�x; ping : whV

p

i�x `

x

� (): ping!hvi : thunk;

that is

�; x : lo; in : whthunki�x; ping : whV

p

i�x `

x

ping!hvi : pro

Finally this requires the judgement

�; x : lo; in : whthunki�x; ping : whV

p

i�x `

x

v : V

p

(7)

Note that this heking of v is arried out relative to the variable

loation x; so the type V

p

needs to be some global type, whose meaning is

independent of the urrent loation. This ould be a base type suh as int,

although we will see more interesting examples, suh as return hannels,

later.

4.3 Site protetion

A simple infrastruture for a typial site ould take the form

hJin?(� : I) � run � j SK

The on-site ode S ould provide various servies for inoming agents,

repeatedly aepted at the input port in. In a relaxed omputing environ-

ment the type I ould simply be thunk indiating that any well-typed ode

will be allowed to immigrate. In the sequel we will always assume that

when the type of the port in is not disussed it has this liberal type.

However onstraints an be imposed on inoming ode by only pub-

liising ports whih have assoiated with them more restritive guardian

types. In suh ases it is important that read apabilities on the these

ports be retained by the host. This point will be ignored in the ensuring

disussion, whih instead onentrates on the forms the guardian types

an take.

Consider a system onsisting of a server and lient, de�ned below,

running in parallel.
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Server: sJreq?(� : S) run � j � news!hsandaliK

Client: Jgoto

req

s:news?(x) goto

in

: report!hxi

j in?(� : R) run � j report?(
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server, S. By dethunking we get the requirement

� `

s

news?(x) goto

in

: report!hxi : pr[news : rhstringi�s; in : whRi�℄

This is established via an appliation of the rule (ty-in). The �rst premise

is immediate sine we assume � `

s

news : rwhstringi. Moreover the seond

amounts to

�; x : string `

s

goto

in

: report!hxi : pr[news : rhstringi�s; in : whRi�℄

beause the value being reeived is a string; that is pr

h

[x : string�s℄ is the

trivial proess type pr[℄.

The signi�ant step in establishing this seond premise is to hek that

the ode returning to the lient satis�es its guardian type R:

�; x : string `



in!h report!hxii : pr[news : rhstringi�s; in : whRi�℄ (9)

However this is straightforward sine R is the liberal guardian thunk. It

follows by an appliation of the output rule (ty-out) in Figure 7. But it

is important to note that in the appliation the third premise is vauous,

as pr

h

[� (): report!hxi : pro℄ is the trivial type pr[℄.

The urrent type R = thunk leaves the lient site open to abuse but it

is easy to hek that the above reasoning is still valid if the guardians are

hanged to

R : th[report : whstringi�℄

S : th[news : rhstringi�s; in : whRi�℄

Here the guardian for the lient only allows in agents whih write to the

loal port report; note that this hange requires that the guardian at the

server site also uses this more restritive type in its annotation for the

port in at .

One an hek that with these new restritive guardians the system is

still well-typed. The only extra work required is in providing a proof for

the judgement (9) above, ensuring that the ode returning to the lient

satis�es the more demanding guardian. By an appliation of (ty-go) and

(ty-out) this redues to the judgement

�; x : string `



� (): report!hxi : th[report : whstringi�℄

whih is a straightforward onsequene of (ty-out).

It might be tempting to de�ne the guardians by

R : th[report : whstringi�℄

S : th[news : rhstringi�s; in : whthunki�℄

Here both server and lient protet their own resoures but the server is

uninterested in what happens at the lient site, by allowing ode with



26 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

arbitrary apabilities on the lient port in. However there is an intuitive

inonsisteny here. The lient has read apability at its port, at the re-

stritive type R, while somehow the server has obtained a more liberal

write apability there, namely thunk.

In fat the system an not be typed with these revised guardians. In

partiular

� 6` sJreq?(� : S) run �K

Any derivation of this judgement would require the judgement

�; � : S `

s

run �

whih in turn would require

� ` S : ty

or more formally

� ` S <: S

But as we will see this an not be inferred; that is S is not a valid type,

relative to �.

To see why let us suppose, for simpliity, that the port in has been

delared at the site  with a type of the form rwhR;Wi for some type W.

One onstraint in the type formation rules, (see (ty-han) in Figure 11)

is that the write apabilities on a hannel are always a subtype the read

apabilities; in our setting this means that � ` W <: R. Our rules also

ensure that � `



in : whT

w

i implies � ` T

w

<: W and onsequently

� ` T

w

<: R.

However the struture of R ensures that �

0

` thunk <: R for no �

0

, from

whihthe` aty

<
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lient server from (8) above:

Server: sJreq?(� with y : S

d

) run � j � news!hsandaliK

Client: J(new report)

goto

req

s:news?(x) goto

in

: report!hxi with  j

in?(� : R) run � j report?(y) : : :K

(12)

with the types

R : thunk

S

d

: Tdep(y : I) th[news : rhstringi�s; in : whRi�y℄

I : lo[
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whih in turn requires the premise

�; y : lo; in : whthunki�y ` th

y
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the usual proess to the server but now aompanies it with the triple

(; report; in)

The ode for the server is the same exept that aompanying the

inoming thread it expets three values. Its guardian type S

d

however is

hanged to

S

d

: Tdep(y : lo; z : whstringi�y; x : whth[z : whstringi�y℄i�y)

th[news : rhstringi�s; x : whth[z : whstringi�y℄i�y℄

Here, one more, this guardian type does not mention any lient names,

but it allows lients to employ muh more restritive guardian types at

their own sites. We leave the reader to hek that this revised system an

still be typeheked.

4.6 Existential
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output rule for existential types; see (ty-outE) in Figure 7, whih has

already been explained in Setion 3.3.

Let us now reformulate (14) above using existential types:

Server: sJreq?(� : S

e

) run � j � news!hsandaliK

Client: J(new report)

(new in : rwhRi)

goto

req

s:news?(x) goto

in

: report!hxi j

in?(� : R) run � j report?(y) : : :K

(16)

Here the guardian type S

e

is

Edep(y : lo;
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This is neessary in order to ensure that run an be applied to �. Here we

use an appliation of (ty-Elookup) from Figure 6 to obtain

�; f� : S

e

g `

s

� : th

y

One an also establish, using the subtyping rules,

�; f� : S

e

g ` th

y

<: pro

and therefore by (ty-subtyping) from Figure 6 we obtain the required

judgement (18) above.

Now let us examine the lient. Here the entral point is to ensure that

the goto

req

s: : : : ommand is well-typed, whih amounts to establishing

the judgement:

�; report : rwhstringi� `

s
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(F foo), running at s, to behave in aordane with the type

pr[foo : rhstringi�s; in : whthunki�℄

This is indeed the ase as F an be assigned the parameterised type

Fdep(y : rhstringi! pr[y : rhstringi�here; in : whthunki�℄) (21)

To see this let � be as desribed on 24. Then, using a simple variation on

the inferene desribed there, we an infer

�; y : rhstringi�s `

s

y?(x) goto

in

: report
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whih is in turn an elaboration of the example we have just onsidered:

Server: sJreq?(� : S

se

) (� news) j � news!hsandaliK

Client: J(new report)

(new in : rwhRi)

goto

req

s:F j

in?(� : R) stringi: y?(x newsthe server, and at

the same time the server isawareof reply mehanismsplae at

the lient; indeed these are generated dynamially by the lient and used

to the sript F tobesentto server. One showthissystemiswell-typedif we let the guardian type for the lient an to

be

R : th[report : wstringi�℄

S

se

Fdep(w : r S

w

e

is the existential type

Edep(y : lo; z : wstringi�y; x : wth[z : wstringi�y℄i�y)

th[w : rth[z : wstringi�y℄i�y℄

5 Subjet Redution

Many of the expeted properties anderived our typesystem.Tostate suintly it will useful to use

�

w

v : T or a proess judgement � our attention judgements in whih � no

ourrenes of thespeial symbol herethus they will only our as partof types(~x :

~

T!�) note in appliations

(ty-abs) from 7 they are eliminated.

Proposition 5.r (Sanity Cheks).

� � env .

� � � : ty

Proof: The �rst is proved by indution on the of � ` on that of theinferene of � �. It required

by the base ase (ty-stop) while in ases (ty-out), (ty-outE





38 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

An interesting onsequene of this result is that whenever the onditions

of the proposition hold C

1

u C

2

is guaranteed to exist. This is spelled out

in detail in Proposition A.2 in the Appendix.

As usual the proof of Subjet Redution relies on the fat that, in a

suitable sense, type inferene is preserved under substitutions. We require

two suh results, one for standard values, and one for the existential values

used in type inferene.

Lemma 5.4 (Substitution). Suppose � `

w

1

v : T with x not in �.

Then �; x : (T)�w

1

;� `

w

2

J : T implies �;�fj

v

=xjg `

w

2

fj

v

=xjg

Jfj

v

=xjg : Tfj

v

=xjg

Proof: First note that the entry x : (T)�w

1

an only take one of three

forms, a hannel registration, x : rhDi, a loation delaration x : lo, a

hannel delaration, x : C�w

0

or a sript delaration x : S. The proof is

by indution on the inferene of �; x : (T)�w

1

;� `

w

2

J : T, whih an

use the rules from Figure 6 or Figure 7. For onveniene we use �

0

to

denote �fj

v

=xjg for the various syntati ategories �. Also we use �

e

as

an abbreviation for the environment �; x : (T)�w

1

;�. First let us look at

some ases from Figure 6.

� Suppose (ty-lookup) is used. So �

e

`

w

2

u : E beause

(i) �

e

` env

(ii) �

e

has the form �

1

; u : (E)�w

2

; : : : .

The substitution result for well-de�ned environments, Proposition A.5

in the appendix, ensures that

(i') �;�

0

` env

To obtain the orresponding

(ii') �;�

0

has the form �

1

; u

0

: (E

0

)�w

0

2

; : : :

we perform a ase analysis on where u : (E)�w

2

ours in �

e

; with

(i') and (ii') an appliation of the rule (ty-lookup) gives the required

� `

w

0

2

u

0

: E

0

.

If it ours in � then (ii') is immediate sine the substitutions have

no e�et. If it ours in � then u

0

: (E

0

)�w

0

2

ours in �

0

and so

(ii') holds. Finally u : (E)�w

2

ould oinide with x : (T)�w

1

. There

are now a number of ases, depending on the form of (T)�w

1

. As

an example suppose it is C�w

1

. Then w

1

and w

2

oinide and x an

not appear in C; w

1

. Therefore the hypothesis � `

w

1

v : C gives the

required result, �;�

0

`

w

2

v : C, by Weakening.

� The ase (ty-Elookup) is very similar, although there are only two
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the latter ontains : : : k : lo; v : (C

0

1

u C

0

2

)�k; : : : . Nevertheless it will

always be the ase that

�;�

0

; (fk : Kg)

0

� �;�

0

; (fk : K

0

g)

and therefore by Weakening (i'),(ii') and (iii') apply also to the latter.

So (ty-lo) an be applied to these to obtain the required

�;�

0

`

w

0

2

(newlo k : K

0

)withC

0

in P

0

: �

0

� Suppose (ty-in) is used. So � `

w

2

u?(X : U)P : � beause

(i) �

e

` pr[u : rhUi�w

2

℄ <: �

(ii) �

e

; fX : (U)�w

2

g `

w

2

P : (� t pr

h

[X : (U)�w

2

℄)

Applying the substitution result for subtyping, Proposition A.5 we get

(i') �;�

0

` pr[u

0

: rhU

0

i�w

0

2

℄ <: �

0

sine (pr[u : rhUi�w

2

℄)

0

is pr[u

0

: rhU

0

i�w

0

2

℄. Applying indution to (ii)

gives

(ii') �;�

0

; (fX : (U)�w

2

g)

0

`

w

0

2

P

0

: (� t pr

h

[X : (U)�w

2

℄)

0

Now substitutions distribute over t (see Proposition A.3 in the Ap-

pendix), and also over the hannel extration funtion (See Proposi-

tion A.4). So this may be rewritten

(ii') �;�

0

; (fX : (U)�w

2

g)

0

`

w

0

2

P

0

: (�

0

t pr

h

[X : (U

0

)�w

0

2

℄)

as x is guaranteed not to be in the pattern X. As in the previous ase,

we an show that

�;�

0

; (fX : (U)�w

2

g)

0

� �;�

0

; fX : (U

0

)�w

0

2

g

although beause of loation types they may not be idential. Never-

theless this is suÆient to be able to apply (ty-in) to (i'),(ii') to obtain

the required �;�

0

`

w

0

2

u?(X : U

0

)P

0

: � �

This substitution result an be generalised to arbitrary patterns, but

we only require it in a speial ase:

Corollary 5.5. Let X be a pattern and suppose � `

w

1

V : T where

T is not an existential type. Then �; fX : (T)�w

1

g `

w

2

J
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So �; fX : (K)�wg is �; x : lo; u

1

: C

1

�x; : : : ; u

n

: C

n

�x whih an be

written as

�; x : lo; (u

1

: C

1

�x; : : : ; u

n

: C

n

�x)

So applying the previous lemma we obtain

�; u

1

: C

1

�v; : : : u

n

: C

n

�v `

w

2

fj

v

=xjg

Jfj

v

=xjg : Tfj

v

=xjg

But � `

w

2

v : K means that � `

v

u

i

: C

i

for eah i. So we see that

� � �; u

1

: C

1

�v; : : : u

n

: C

n

�v from whih the required

� `

w

2

fj

v

=xjg

Jfj

v

=xjg : Tfj

v

=xjg

follows. �

The orresponding result for existential types uses di�erent substitu-

tions into proesses and types. The ruial property of existential values

is that the use of their witnesses is very limited:

Proposition 5.6. Suppose �; y : hT with ~x :

~

Ei;�

0

`

w

J : T. Then

x

i

62 fv(J) and x

i

does not our in �

0

; w.

Proof: By indution on the inferene. Intuitively the result follows from

the fat that the only information available, via (ty-Elookup), from the

entry y : hT with ~x :

~

Ei is that y has the type T; no information on x

i

is available. The proof relies on the orresponding result for well-de�ned

environments and subtyping, Proposition A.6 �

This result provides the entral property underlying the substitution result

for existential values.

Lemma 5.7 (ESubstitution). Suppose � `

w

1

h~v; vi : Edep(~x :

~

E)T.

Then �; y : h(T)�w

1

with ~x :

~

Ei;� `

w

2

J : T; w

2

: lo implies �;�fj

v

=yjg `

w

2

fj

v

=yjg

Jfj

v

=yjg : Tfj

~v

=~xjg

Proof: The proof follows the lines of that of Lemma 5.4, with frequent

appliations of the previous proposition, Proposition 5.6, to ensure that

only the substitution of v for x is applied to proess terms and names. As

usual ertain ases depends on the orresponding result for well-typed en-

vironments and subtyping judgements, Proposition A.7 in the Appendix.

�

Theorem 5.8 (Subjet Redution).

Suppose � ` M . Then M �! N implies � ` N:

Proof: It is a question of examining eah of the rules in Figure 2 in

turn. Note that (r-str) requires that typing is preserved
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� (~u; F ) a tuple in whih the last value F , a sript, may depend on the

�rst-order values (~u). These have a type of the form Tdep(~x :

~

A) S.

� F a sript, the �nal omponent of an existential value h~u; F i with a

type of the form Edep(~x :

~

A) S.

Simple sripts may be simulated via the empty dependent type Tdep() S,

as an simple �rst-order values, via the type Tdep()A. Our results extend

to the full language, although the proofs require the development of more

ompliated notations.

6.1 A ontextual equivalene

We intend to use a ontext based equivalene in whih systems are asked

to be deemed equivalent in all reasonable safeDpi ontexts. What is

perhaps not so lear here is the notion of reasonable ontext. In previous

work on mobile aluli, [9, 8,
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Thus, in representing the environment's knowledge of the system we must

also represent the information about whih loations are available for di-

ret testing. This motivates the following de�nition.

Definition 6.3 (Knowledge strutures). A knowledge struture is

a pair (�; T ), where

� � is a type environment suh that � ` env

� T is a subset of Los suh that if k 2 T then k : lo 2 �

We use I to range over knowledge strutures and write I

�

and I

T

to refer

to the respetive omponents of the struture. We sometimes refer to

writerect
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(4) I; fn : Eg j=M RN implies I j= (new n : E)M R (new n : E)N �

In the �rst ondition we are assured that k is a fresh loation; therefore

this form of weakening allows the environment to reate for itself fresh

loations at whih it may deploy ode. The seond form of weakening,

in (2), allows it to invent new names with whih to program proesses.

Condition (3) allows it to plae well-typed ode at sites to whih it has

aess rights, while (4) is the standard mehanism for handling names

whih are private to the systems being investigated.

Barb Preservation: For any given loation k and any given hannel a

suh that k 2 I

T

and I

�

`

k

a : rwhuniti we write I ` M +

barb

a�k if there

exists some M

0

suh that M�!

�

M

0

j kJa!hiK. We say that a knowledge-

indexed relation is barb preserving if I j= M R N and I ` M +

barb

a�k

implies I ` N +

barb

a�k.

Definition 6.6 (Redution barbed ongruene). We let �

xt

be

the largest knowledge-indexed relation over systems whih is

� pointwise symmetri (that is I j=M �

xt

N implies I j= N �

xt

N)

� redution losed

� ontextual

� barb preserving �

We take redution barbed ongruene to be our touhstone equivalene

for safeDpi as it is based on simple observable behaviour respeted in all

ontexts. The de�nition above is stated relative to hoie of the knowledge

struture I. We should point out however that, for any given systems

M;N and type environment � suh that � ` M and � ` N then there

is a anonial hoie of knowledge struture I, namely, (�; T

�

) where we

let T

�

= f k j k : lo 2 � g. This hoie of knowledge struture gives

rise to what we feel to be a natural and intuitive notion of equivalene for

well-typed safeDpi systems.

Of ourse, the quanti�ation over all ontexts makes reasoning about

the equivalene virtually intratable. However it is ommon pratie, [19,

21, 1, 9, 8℄, to provide some sort of model or alternative haraterisation

in terms of labelled transition systems, whih makes the behaviour of

systems muh more aessible. In partiular if the ations in the labelled

transition system are suÆiently simple this an lead to automati, or

semi-automati veri�ation methods.

In the next setion we show that this ontextual equivalene for safeDpi

an be haraterised in a similar manner, as a bisimulation equivalene

over a suitably de�ned labelled transition system.
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6.2 A bisimulation equivalene

We �rst disuss the labels, or ations, to be used in the labelled transition

system. They are given by
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(m-reeive)

k 2 I

T

T =

d

I

w

�

(a; k) I

w

�

(a; k) 6= ;

I

�

`

k

V : T

(I � kJa?(X : U)P K)

k:a:V ?

����! (I � kJPfj

V

=XjgK)

(m-deliver)

k 2 I

T

T =

d

I

w

�

(a; k) I

w

�

(a; k) 6= ;

I

�

`

k

V : T

(I �M)

k:a:V ?

����!
(I �M j kJa!hV iK)

(m-send:val)

k 2 I

T

Ta �rst-order type

T =

d

I

r

�

(a; k) I

r

�

(a; k) 6= ;

I

�

; f~u : (T)�kg ` env

(I � kJa!heuiK)

k:a:eu!

���! (I; feu : (T)�kg� kJstopK)

(m-send:sript)

k 2 I

T

T of the form Edep(~x :

~

T )S

T =

d

I

r

�

(a; k) I

r

�

(a; k) 6= ;

I

�

`

k

G : T! pro

(I � kJa!hF iK)

k:a:G!

����! (I � kJG (F )K)

(m-send:dep:sript)

k 2 I

T

T of the form Tdep(~x :

~

E) S

T =

d

I

r

�

(a; k) I

r

�

(a; k) 6= ;

I

�

; f~u : (

~

E)�kg ` env

I

�

`

k

G : T! pro

(I � kJa!h(eu; F )iK)

k:a:(eu;G)!

������! (I; feu :

e

(E)�kg� kJG (eu; F )K)

(m-goto)

k 62 I

T

I

�

`

k

p!hV i : pro

(I �M)

go

p

k:V

����! (I �M j kJp!hV iK)

Figure

Figure

Figure
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The inferene rules for the ation judgements (23) are given in Fig-

ures 9, and again they are informed by the orresponding rules in Fig-

ure 10 of [8℄. Here we abuse notation a little by writing (m)� to mean

(~n :

~

E)(m; ~m)�

0

whenever � is (~n :

~

E)( ~m)�

0

. Note that, unlike in [8℄, we

have two weakening rules; the new one, (m-Tweak), allows the environ-

ment to invent a new loation k at whih it has aess rights.

As a sanity hek on these judgements we give a preise desription of

the possible forms the ations an take; to aid readability we will use G

to represent a sript furnished by the environment and F to represent one

furnished by the system:

Proposition 6.7. Suppose that I � M is a on�guration from whih

(I �M)

�

�! (I

0

�N), where � is not � . Then � takes one of the following

forms:

First-order: input (~n :

~

E)k:a:(~u)?, where (~n) � (~u), or output ( ~m)k:a:(~u)!,

where ( ~m) � (~u)

Sript: input (~n :

~

E)k:a:F ?, where (~n) � fn(F ), or output (~n :

~

E)k:a:G!

where (~n) � fn(G)

Dependent sript: input (~n :

~

E)k:a:(~u; F )?, where (~n) � (~u) [ fn(F ),

or output (~n :

~

E)( ~m)k:a:(~u;G)!, where (~n) � fn(G) and ( ~m) � (~u)

Aynhronous-goto: (~n :

~

E)go

p

k:F , where (~n) � fn(F ).

Proof: By indution on the inferene of (I �M)

�

�! (I

0

�N): �

Proposition 6.8 (Well-definedness). Suppose I �M is a on�gura-

tion. Then (I �M)

�

�! (I

0

�N) implies I

0

�N is also a on�guration.

Proof: By indution on the inferene of (I �M)

�

�! (I

0

� N), and an

analysis of the last rule used; the details are similar to the orresponding

result, Proposition 4.4 of [8℄; the aess rights omponent of I,
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an be inferred from Figure 8 and Figure 9. The standard de�nition of

bisimulation therefore gives a o-indutive relation over on�gurations:

Definition 6.9 (Bisimulations). We say the binary relation between

on�gurations R is a typed bisimulation if C RD implies

� C

�

�! C

0

implies D

�̂

=)D

0

for D

0

suh that C

0

RD

0

� D

�

�!D

0

implies C

�̂

=)C

0

for C

0

suh that C

0

RD

0

where

�̂

=) is the standard notation, meaning

�

�!

�

�

�!

�

�!

�

for � not equal

to � and

�

�!

�

otherwise.

We write I j= M �

bis

N whenever there exists some bisimulation R

suh that (I �M)R (I �N). �

With this notation, that is by viewing the knowledge-struture I as a pa-

rameter, we onstrue �

bis

to be a knowledge-indexed relation over systems.

This enables us to ompare it diretly with the touhstone behavioural

equivalene �

xt

. The main tehnial property we require of �

bis

is given

in the following result:

Proposition 6.10. The knowledge-indexed relaton �

bis

is ontextual.

Proof: This follows similar lines to the equivalent statement in [8℄. For

this reason we only show that �

bis

is preserved by parallel omposition

here. Let R be de�ned by

(I � (new ~n :

~

T

1

)M j

Y

i2I

k

i

JP

i

K)R (I � (new ~n :

~

T

2

)N j

Y

i2I

k

i

JP

i

K)

if and only if there exists some I

0

�

, (

~

T) and T

0

suh that

I

0

�

<: I

�

(

~

T

1

) <: (

~

T) and (

~

T

2

) <: (

~

T)

T

0

� ~n

I

0

�

` k

i

JP

i

K and k

i

2 I

T

+ T

0

for eah i 2 I

(I

0

�

; I

T

+ T

0

); f~n : Tg j=M �

bis

N

We aim to show that R is a bisimulation from whih the result follows

immediately. For the purposes of this exposition we will assume that ~n is

empty and that the indexing set I is a singleton. We take any

(I �M j kJP K)R (I �N j kJP K)

so we have some I

0

�

suh that

(I

0

�

; I

T

) j=M �

bis

N (24)

with I

0

�

` kJP K and k 2 I

T

. We suppose that (I�M jkJP K)

�

�! (I

0

�M

0

)

and now must show that there is a orresponding mathing move from
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with l; k 2 I

00

T

also. Therefore, by de�nition of R again, we see that

I j= (new l : L)(M j lJCK j kJQK)R (new l : L)(N j lJCK j kJQK) (25)

We know that (I �N j kJP K)

�

�! (I � (new l : L)(N j lJCK j kJQK)) and

that M

0

�M jM

00

� (new l : L)(M j lJCK j kJQK), so by (25), we have

I j= M

0

R (new l : L)(N j lJCK j kJQK)

and our mathing transition as required.

Alternatively, suppose that kJP K �! M

00

is derived from an in-

stane of (r-move). We then have

P = goto p:lF and M

00

� lJp!hF iK

for some p; l; F . It is important to note here that the loation l may

not be ontained in I

T

and this prevents us from immediately using

the de�nition of relation R to laim that

I j= M j lJp!hF iKRN j
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where U

0

<: U. Call the target knowledge struture I

000

. This tells us,

by (24) that there exists a mathing transition

(I

0

�

; I

T

)�N

( ~m)k:a:( ~m

0

;G)!

=========) (I
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if I j= M �

xt

N . We outline the proof that R de�nes a bisimulation,

from whih the result follows.

To this end suppose (I � M)

�

�! (I

0

� M

0

), where I j= M R N .

We must �nd a mathing move (I � N)

�

=) (I

0

� N

0

), suh that I

0

j=

M

0

R N

0

. For the purposes of this sketh we assume for simpliity that

I = I

0

. By De�nability, Proposition 6.12. We know that there exists a

system C

I

�

, typeable from I

�
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The ase in whih (I�M)

�

�!(I

0

�M

0

) for I

0

not equal to I is slightly

more ompliated and is dealt with using an Extrusion Lemma similar to

that found in [6, 9, 8℄. �

This provides an alternative haraterisation of redution barbed on-

gruene whih models the nature of knowledge aquisition possible by

testing with highly onstrained mobile ode in an expliit way.

7 Conlusion

We have developed a sophistiated type system for ontrolling the be-

haviour of mobile ode in distributed systems, and demonstrated that,

at least in priniple, oindutive proof priniples an still be applied to

investigate their behaviour.

The use of types in this manner ould be onsidered as a partiular

ase of the general approah of proof-arrying ode, [18℄ and typed assembly

language (TAL) [17℄. Here hosts would publish their safety poliies in

terms of a type or logial proposition and ode wishing to enter would

have to arrive with a proof, whih a typeheker or proofheker an use

to verify that it satis�es the published poliy. Indeed we intend to use

the types of the urrent paper in this manner, by extending the work in

[20℄. The work of [18℄ and [17℄ has inspired muh further researh into

the use of type systems in higher-level languages for resoure aess and

usage monitoring, [23℄, [12℄, for example. However the emphasis in these

papers is on dynamis and ounting of resoure usage rather than using

sophistiated types to speify �ne-grained aess ontrol.

There has been muh work on modelling mobility and loations using

partiular proess aluli. Perhaps the alulus losest to safeDpi is the

Seal Calulus, [5℄. Seals are hierarhially organised omputational sites

in whih inter-seal ommuniation, whih is hannel-based, is only allowed

among siblings or between parents and siblings. Seals may also be om-

muniated, rather like the ommuniation of higher-order proesses along

ports in safeDpi; indeed in some sense it is more general as the seal being

transmitted may be omputationally ative. However the ommuniation

of seals is more ompliated, as it involves agreement between three par-

tiipants, the sender, the reeiver, and the seal being transmitted. Seals

are also typed using interfaes, similar to our �ne-grained proess types,

�. But these only reord the input apabilities a seal o�ers to its parents,

and in order to preserve interfaes under redution the transmission of

input hannel apabilities is forbidden in the language. This is a severe

restrition, at least in general distributed omputing, if not in the more fo-

used appliation area of seals. For example the generation of new servers
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requires the the transmission of input apabilities. We believe that our

dependent and existential types an also be applied to the Seal Calulus,

to obtain a more general notion of interfae, whih will still be preserved

by redution.

The M-alulus, [22℄, a higher-order extension of the distributed join

alulus, is also losely related, at least oneptually, to safeDpi. Here,

not only are loations hierarhially organised, but are programmable, in

the sense that entry and exit poliies for eah loation an be expliitly

programmed. In addition it has an interesting operator, alled passivation,

whih an freeze the ontents of a site into a value. However their type

system is not related to one we have developed for safeDpi; the latter

addresses aess ontrol issues for migrating ode whereas the former is

onerned with uniity of loations; in a higher-order language with a

passivation operator it is important to ensure that eah loality has a

unique name. Thus the type system for the M-Calulus draws on that

presented in [24℄, where uniity of the loation of hannel names was

addressed, rather than that of [25℄, whih developed �ne-grained aess

ontrol types for proesses.

Type systems have also been used to expliitly ontrol mobility in

distributed aluli, most notably in variants of the Ambient alulus of

Cardelli and Gordon [3℄. In partiular, [2℄, [16℄ use subtyping to on-

trol movement of mobile proesses in a hierarhially distributed system

by introduing expliit types to express permission to migrate. A simi-

lar tehnique was used for Dpi in [10℄, [8℄. In ontrast, here we ontrol

mobility only indiretly through types. Code is always permitted to mi-

grate provided it has aess to a suitable port at the target loation. But

by restriting the use of hannels in the types this onsequently restrits

migration. Indeed, we deouple permission to migrate from the loation

name itself, a�ording more exibility in the ontrol of migration.

The oindutive haraterisation presented here makes use of higher-

order ations in the sense that, to interat with a system willing to send

a sript V , the environment must supply a reeiving sript G to whih V

will be applied. A similar approah is used in the haraterisation theo-

rems for various forms of ambients in [7℄ and [15℄. Higher-order ations

are also used in the bisimulation equivalene presented in [4℄ for the Seal

alulus. However, there the three way nature of higher-order ommuni-

ation leads to a proliferation of suh ations, some of whih an not be

simulated by seal ontexts; see Setion 4.4 of [5℄ for examples. As a re-

sult the bisimulation equivalene is more disriminating than the natural

ontextual equivalene for seals.

Suh higher-order bisimulations do not diretly result in automati
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ously, using the rules in Figure 10 and Figure 11. The former are a mild

extension of the orresponding rules in Figure 6 of [8℄ to aommodate

sript and dependent types and rely on a prediate � `

lookup

u : T, whih

simply looks up the type assoiated with u in �. The latter is an extension

of the well-known subtyping rules of types in the Pialulus, [21℄, and

Dpi, [10, 8℄; the rules for proess types are similar to those used in [25℄.

The judgements also hek that the identi�ers used in T; U are atually

delared appropriately in �.

Proposition A.1 (Sanity Cheks).

� � ` T <: U implies � ` env

� � ` T <: U implies � ` T : ty and � ` U : ty

� � ` T <: U, � ` U <: R implies � ` T <: R

� �; u : T ` env implies � ` env and � ` T : ty

Proof: By rule indution. �

Meets and Joins: The partial operators u; t on type expressions are

de�ned by extending the de�nitions used in [10, 8℄ for hannel and loation

types. We take them to be the least reexive and symmetri operators

whih satisfy a series of rules for ombining together various kinds of type

expressions. Those governing hannel expressions are, as in [10℄:

� rhT

1

i u rhT

2

i = rhT

1

u T

2

i, rhT

1

i t rhT

2

i = rhT

1

t T

2

i

� whT

1

i u whT

2

i = whT

1

t T

2

i, whT

1

i t whT

2

i = whT

1

u T

2

i

� rhT

r

i u whT

w

i = rwhT

r

;T

w

i

� rwhT

r

;T

w

i u rhT

0

r

i = rwhT

r

u T

0

r

;T

w

i,

rwhT

r

;T

w

i t rhT

0

r

i = rwhT

r

t T

0

r

;T

w

i,

� rwhT

r

;T

w

i u whT

0

w

i = rwhT

r

;T

w

t T

0

w

i,

rwhT

r

;T

w

i t rhT

0

w

i = rwhT

r

;T

w

u T

0

w

i,

To express the rules for loation types we take advantage of the fat that

the ordering of their omponents is immaterial:

� lo[u

1

: C

0

1

℄u lo[u

1

: C

1

; : : : ; u

n

: C

n

℄ = lo[u

1

: (C

0

1

uC

1

); : : : ; u

n

: C

n

℄,

lo[u

1

: C

0

1

℄ t lo[u

1

: C

1

; : : : ; u

n

: C

n

℄ = lo[u

1

: (C

0

1

t C

1

)℄

� if u does not our in fu

1

; : : : ; u

n

g then

lo[u : C℄ u lo[u

1

: C

1

; : : : ; u

n

: C

n

℄ = lo[u : C; u

1

: C

1

; : : : ; u

n

: C

n

℄,

lo[u : C℄ t lo[u

1

: C

1

; : : : ; u

n

: C

n

℄ = lo[℄

� lo[u

1

: C

1

; : : : ; u

n

: C

n

℄ u K = lo[u

1

: C

1

℄ u (: : : (lo[u

n

: C

n

℄ u K) : : : ),

lo[u

1

: C

1

; : : : ; u

n

: C

n

℄tK = (lo[u

1

: C

1

℄tK)u : : :u (lo[u

n

: C

n

℄tK)
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We use a similar approah to de�ning the operations on proess types,

where we use GC as an arbitrary type of the form C�w. However the

proess type onstrutor is ontravariant, whereas the loation onstrutor

is ovariant.

� pr[u

1

: C

0

1

�w

1

℄ u pr[u

1

: C

1

�w

1

; : : : ; u

n

: GC

n

℄ = pr[u

1

: (C

0

1

t C

1

)�w

1

℄,

pr[u

1

: C

0

1

�w

1

℄ t pr[u

1

: C

1

�w

1

; : : : ; u

n

: GC

n

℄ =

pr[u

1

: (C

0

1

u C

1

)�w

1

; : : : ; u

n

: GC

n

℄

� if u�w does not our in fu

1

�w

1

; : : : ; u

n

�w

n

g then

pr[u : C�w℄ u pr[u

1

: C

1

�w; : : : ; u

n

: C

n

�w

n

℄ = pr[℄,

pr[u : C�w℄ t pr[u

1

: C

1

�w

1

; : : : ; u

n

: C

n

�w

n

℄ =

pr[u : C�w; u

1

: C

1

�w

1

: : : ; u

n

: C

n

�w℄

� pr[u

1

: GC

1

; : : : ; u

n

: GC

n

℄ u � =

(pr[u

1

: GC

1

℄ u �) t : : : t (pr[u

n

: GC

n

℄ u �),

pr[u

1

: GC

1

; : : : ; u

n

: GC

n

℄ t � = pr[u

1

: GC

1

℄ t (: : : (u

n

: GC

n

t �) : : : )

� pro u � = �, pro t � = pro

For the various forms of dependent types, the rules are straightforward:

� Fdep(~x :

~

T!�) u Fdep(~x :

~

T!�

0

) = Fdep(~x :

~

T!(� u �

0

)),

Fdep(~x :

~

T!�) t Fdep(~x :

~

T!�

0

) = Tdep(~x :

~

T) (� t �

0

)

� Tdep(~x :

~

T)T u Tdep(~x :

~

T)T

0

= Tdep(~x :

~

T) (T u T

0

),

Tdep(~x :

~

T)T t Tdep(~x :

~

T)T

0

= Tdep(~x :

~

T) (T t T

0

)

� Edep(~x :

~

T)T u Edep(~x :

~

T)T

0

= Edep(~x :

~

T) (T u T

0

),

Edep(~x :

~

T)T t Edep(~x :

~

T)T

0

= Edep(~x :

~

T) (T t T

0

)

For the remaining kinds of type expressions we merely extend the de�ni-

tions homomorphially:

� rhCi u rhC

0

i = rhC u C

0

i, rhCi t rhC

0

i = rhC t C

0

i

� T�w u T

0

�w = (T u T

0

)�w

Proposition A.2.

� If there exists some type expression T suh that � ` T <: T

1

and

� ` T <: T

2

then T

1

u T

2

is well-de�ned

� When T

1

uT

2

is well-de�ned, � ` T

1

uT

2

<: T

i

and � ` T <: T

1

uT

2

,

for any type expression T suh that � ` T <: T

1

and � ` T <: T

2

.

� If there exists some type expression T suh that � ` T

1

<: T and

� ` T

2

<: T then T

1

t T

2

is well-de�ned

� When T

1

tT

2

is well-de�ned, � ` T

i

<: T

1

tT

2

, and � ` T

1

tT

2

<: T,

for any type expression T suh that � ` T

1

<: T and � ` T

2

<: T.
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Proof: The �rst and third statements are proved by indution on the

derivations of � ` T

i

<: T and � ` T <: T

i

respetively. The seond and

fourth are by indution on the onstrution of T

1

uT

2

; T

1

tT

2

respetively.

�

Note that beause of the top type > the premise of the third statement is

always true; so T

1

t T

2

always exists, although in many ases it will be

the uninformative type >.

Substitutions: Free identi�ers may our in type expressions and there-

fore we need to de�ne Tfj

v

=ujg for an arbitrary type expression T; this is

then used as part of the de�nition of substitution into proess terms. The

de�nition of Tfj

v

=ujg is by indution on the struture of T. The only inter-

esting ases are loation and proess types, where the de�nition needs to

ensure that the entries remain unique:

� lo[u

0

: C℄fj

v

=ujg = lo[u

0

fj

v

=ujg : Cfj

v

=ujg℄

� lo[u

1

: C

1

; : : : u

n

: C

n

℄fj

v

=ujg =

(lo[u

1

: C

1

℄fj

v

=ujg) u : : : u (lo[u

n

: C

n

℄fj

v

=ujg)

� pr[u
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