
A Fully Abstract Denotational Semantics for the

�-Calculus

�

Matthew Hennessy

School of Cognitive and Computing Sciences

University of Sussex

June 26, 1996

Abstract

This paper describes the construction of two set-theoretic denotational models

for the �-calculus. The models are obtained as initial solutions to domain equations

in a functor category. By associating with each syntactic construct of the �-calculus

a natural transformation over these models we obtain two interpretations for the

language.

We also show that these models are fully abstract with respect to natural be-

havioural preorders over terms in the language. By this we mean that two terms

are related behaviourally if and only if their interpretations in the model are re-

lated. The behavioural preorders are the standard versions ofmay andmust testing

adapted to the �-calculus. S

1 Introduction

The �-calculus [15, 16] is a process algebra for describing processes which communicate

by exchanging channel names. These names may be private to a particular process but

such a process may decide to share a name with certain other processes by exporting it.

This ability of processes to share common private channel names is the main source of

the expressive power of the �-calculus, at least in relation to other value-passing process

algebras.

Numerous semantic theories have been proposed for the �-calculus, and it variants,

[16, 21, 24, 4]. However, at least until very recently, all of these theories were behaviour

based, i.e. an operational semantics is �rst given to the language and then a semantic

theory is developed by abstracting, using a variety of methods, from certain aspects of

this operational view of processes. Thus, for example, in [21] late and early bisimulation

equivalences are developed for the �-calculus and are characterised using a proof system

for establishing identities between processes. A similar programme is carried out in [4]

for an appropriate adaptation of testing equivalence [7].

�

This work was supported by the EU EXPRESS Working Group and the Royal Society. Much of

the research reported here was carried out during a visit to INRIA, Sophia-Antipolis.

1

whose objects are �nite subsets of N and whose morphisms are injections s

�

7�! s

0

. Let

D be some suitable category of domains. Then D

I

is the category whose

1. objects are functors from I to D

2. morphisms are natural transformations

The domain P we use is an object in D

I

, for a suitable choice of D.

A particular domain P

s

, from this uniform family of domains, needs to be su�ciently

rich to describe the behaviour of all processes with free names included in s. However it

should be clear that this description will require the use of names which are not in s. For

example even if the free names of the process p, of the form n ?�x: t, are included in s a

complete description of its behaviour will have to include what happens when it receives

along the channel n a name which is not in s. Denotationally this will be re
ected in

the fact that the domain equation characterising P will have an input component of the

form N � (N) P). Here N, the representation of the set of names N is the trivial

functor whose action at s returns s itself, and) is the exponential operator in the

functor category. This is such that the action of (N) P) at s describes not only a

function from s to P

s

but also a uniform collection of functions from s

0

to P

s

0

for each s

0

such that s

�

7�! s

0

. This is more than su�cient to capture the consequences of inputting

names not in s.

In a similar manner the proper treatment of restriction requires that the description

of P

s

includes names not in s. whoseins6

form of tensor product which we denote by
 . In short lSL

I

is an autonomous category,

i.e. a closed symmetric monoidal category.

We use as our domain the initial solution to the equation

P

�

=

(A � (N

>

F) � (N

>

C))

?

F

�

=

N) P

C

�

=

(N
 P) +
s
(P)

in the category lSL

I

. Intuitively a non-trivial object in P has three components,

� A, a functor representing the initial nondeterministic behaviour of a process

� N

The models constructed in the present paper are set theoretic, in the sense that they

are de�ned using more or less standard domain theoretic constructions, although the cat-

egories in which the domain equations are solved are rather complicated. The techniques

used are borrowed directly from [25] where a fully abstract model is constructed for the

recursion-free sublanguage of the �-calculus. The domain used is the initial solution

in the category SFP

I

of a domain equation which is a simple variation on the domain

equation used in [1] to model CCS with respect to late strong bisimulation. No explicit

de�nition is given for the natural transformations which interpret language constructs

but the use of the category SFP

I

, and the natural transformation
s
is well-motivated

from a monadic view of computation, as expounded in [18].

A very similar approach is taken in [19] where a very similar model to that in [25] is

constructed for the same subset of the �-calculus with respect to the same equivalence,

strong late bisimulation equivalence, although the same model is used to characterise

the associated congruence. However here the emphasis is more on exhibiting a general

framework which can be instantiated to

(x+ y) + z = x+ (y + z)

x+ 0 = x

x+ (y ^ z) = (x+ y) ^ (x+ z)

x ^ (y + z) = (x ^ y) + (x ^ z)

x ^ y � x+ y

i.e. the extra structure is that of a

singleton set. Let lD

p

denote the category whose objects are functors from I to lSL

p

and

whose morphisms are natural transformations. There are of course the usual variations

on this, for example lD; uD

p

; uD, obtained by using lSL; uSL

p

; uSL respectively, in

place of lSL

p

. These are autonomous categories as they inherit much of the structure

of the underlying categories. Products, coproducts and
 are de�ned pointwise but

as usual exponentiation,) , the right-adjoint of
 , must be expressed in terms of

natural transformations. The objects in (D) E)

s

, i.e. (D) E) acting on the set s,

are dependent families of objects

Y

s

i

7�!s

0

(D

s

0

) E

s

0

)

satisfying certain uniformity constraints, while the morphisms between exponentials are

determined by the requirement for) to be functorial. Luckily we will only have a

restricted need for exponentiations.

Let A be the object in lD

p

whose action on the �nite set s gives the free (lower)

choice predomain A(s+ s), where s+ s is the disjoint union of s with itself, and which

acts on the morphism s

i

7�! s

0

to give the obvious continuous function from A

s

to A

s

0

,

de�ned by A

(s

i

7�!s

0

)

A = f i(a) j a 2 A g. The object N is de�ned analogously: on the

set s it gives the free object of lSL

p

generated by s, i.e. the set of subsets of s, and

on morphisms it simply generalises injections to sets. To construct our model we will

only require exponentials of the form (N) A) which have a particularly simple form;

(N) A)

s

can be represented by a collection of functions over N .

Let F

s

(A) denote the set of all functions f with domain N such that

1. f(n) 2 A

s[fng

2. for all n;m not in s; f(n) = A

(id+m7!n)

f(m).

Under the standard pointwise ordering this is a predomain which is a representation of

the predomain (N) A)

s

.

We wish to solve a domain equation in lD which involves �nding the initial solution

to a functor over it. Note that lSL is a cpo-enriched category, i.e. in the terminology

of [9] it is an O-category, and this is inherited pointwise by lD. This means that any

locally continuous functor, [9], will have an initial �xpoint. In our domain equation we

will use the locally continuous functors � ;
 and) together with the very simple

one
s
. It acts on a functor A as follows:

(
s
A)

s

= A

(s+1)

(
s
A)

(s

i

7�!s

0

)

= A

(i+1)

where i + 1 is the obvious morphism in I from s + 1 to s

0

+ 1. For any functor A we

use up

A

to denote the embedding of A into
s
(A), i.e. up

A

is the natural transformation

between A and
s
(A) which at s is given by the morphism A

in

from A

s

to A

(s+1)

where

s

in

7�! s+ 1 denotes the injection of s into s+ 1.

The functor
s
satis�es the following useful properties:

s
(A

>

) ' (
s
(A))

>

s
(A

?

) ' (
s
(A))

?

9

s
(A�B) '

s
(A)�

s
(B)

s
(A + B) '

s
(A) +

s
(B)

s
(N
 A) ' (N

s
(A)) +

s
(A)

s
(N) A) '

s
(N))

s
(A)

Notation: In general we use a:A ! B to denote the fact that, in the category under

consideration, a is a morphism from the object A to the object B. In the particular

case of the underlying category I we use A

a

7�! B and sometimes when working in a

functor category we will use a:A

�

�! B to emphasise that the morphisms are natural

transformations. We will always use (A) B) to indicate the exponential in a category,

i.e. the object consisting of all morphisms from A to B.

3 The Language

Let V be a set of process variables, ranged over by X;Y; : : :, and N a countable set of

names ranged over by x; y; n;m; : : :. Then the syntax of terms is given by:

t 2 Exp ::= 0 j n ? f j n !x : t j �(n) : t

j t k t j t+ t j t� t

j if b then t else t j X j recX : t

f 2 Abs ::= �x: t

b 2 Bool ::= x = y j :b j b ^ b j b _ b

There are two binding operators for names and one for process variables. Terms may

have free occurrences of both and these are determined by the simple inference system

given in Figure 1. The judgements are of the form � ` t : A where � is a list of names

and process variables which may occur free in t. The type of terms may be P , for

processes or F for abstractions. As is standard we use notation such as �+n to indicate

the list obtained from � by adding n, assuming that n does not already appear in �.

A name substitution is a function over N and we assume the standard de�nition of the

application of a substitution � to a term t to give the new term t�; this renames bound

names as required in order to avoid the capture of substituted names.

The operational semantics of the language is given as a reduction relation

�

�! between

closed terms, terms p such that x

x;X

1

: : :X

i

: : :X

n

` X

i

: P

: : :� � : : : ` t : P

: : : � � : : : ` t : P

� ` 0 : P

� + n ` t : P

� ` �(n) : t : P

� + n ` f : F

� + n ` n ? f : P

� + n+ x ` t : P

� + n+ x ` n !x : t : P

� ` t : P � ` u : P

� ` t op u : P

op = k;+;�

� ` t : P � ` u : P

� ` if b then t elseu : P

� + x ` t : P

� ` �x: t : F

� +X ` t : P

� ` rec X : t : P

Figure 1: Free variables in terms

some evaluation mechanism for boolean expressions, which in view of their simplicity,

should be obvious.

As an example of an application of the reduction rules consider the process term

p = (�(y) : n ! y : r + n !x : r

0

) k n ? (� z: z ! y : 0 + z !x : 0)

Up to �-equivalence there are two possible reductions from p, the �rst to r

0

k (x ! y : 0 +

x !x : 0) by the transmission of the name x, and the second to �(w) : r[w=y] k (w ! y : 0 +

w !x : 0) where w is some new name.

We refer the reader to papers such as [23, 17] for evidence of the expressive power of

this language. Here we con�ne our attention to de�ning two behavioural preorders over

process terms and in later sections we build fully abstract denotational models for these

preorders.

The behavioural preorders are based directly on the ideas of testing as developed for

example in [7, 10]. A process p is tested (to conform to some behavioural requirement) by

running it in parallel with another process e, presumably designed with the behavioural

requirement in mind. This test is deemed a success if the experimenter, e, reaches a

speci�ed state. To model this success state we introduce a new name !, not occuring in

N and we say e is in the success state if it can emit an output along !, we indicate this

by the notation e

!

�!

De�nition 1 Let p must e if for every maximal computation

e k p = c

0

�

�! c

1

�

�! : : :

�

�! c

k

�

�! : : :

11

Axioms:

n ?�x: p

n?m

��! p[m=x] n !m: p

n!m

��! p

p� q

�

�! p p� q

�

�! q

recX : t

�

�! t[recX : t=X]

Communication Rule:

p

n?m

��! p

0

; q

n!m

��! q

0

p k q

�

�! p

0

k q

0

p

n!m

��! p

0

; q

n?m

��! q

0

p k q

�

�! p

0

k q

0

Context Rules:

p

�

�! p

0

p k q

�

�! p

0

k q

q

�

�! q

0

p k q

�

�! p k q

0

p

�

�! p

0

p+ q

�

�! p

0

+ q

p

�

�! p

0

p + q

�

�! p

0

� = n?m; n!m

p

�

�! p

0

�(x) : p

�

�! �(x) : p

0

x not in �

[[b]] = true; p

�

�! p

0

if b thenp else q

�

�! p

0

[[b]] = false; q

�

�! q

0

if b then p else q

�

�! q

0

p � p

0

; p

0

�

�! q

0

; q

0

� q

p

�

�! q

Structural Equivalence:

(�(x) : p) k q � �(x) : (p k q) provided x 62 fv(q)

p � q provided p �

�

q

(p k q) k r � p k (q k r)

p + q � q + p

Figure 2: Operational Semantics

there is some n such that c

n

!

�!

Then p v

must

q if for every test e; p must e implies q must e.

This preorder is based on the idea of a process guaranteeing certain behaviour. There

is a weaker preorder which captures the idea of processes being capable of certain be-

12

haviour: p v

may

q if for every test e; p may e implies q may e, where q may e means

that there is some maximal computation from e k q which reaches a state c

n

such that

c

n

!

�!.

In the next Section we build a model which provides a denotational semantics which

is fully abstract with respect to v

must

and in Section 6 we show how this can be modi�ed

so as to provide a semantics which is fully abstract with respect to v

may

.

We end this section by noting that both of these preorders are natural generalisations

of Morris style contextual preorders, [3, 13]. We have restricted the possible testing

contexts to be of the simple form e k []. We conjecture that the model can also be used

to provide a denotational semantics which is fully abstract with respect to a notion of

testing where more general contexts are allowed, although it is essential that the action

for reporting the success ! be new, i.e. an action which cannot be performed by the

process being tested. A result along these lines, for may testing, is given at the end of

Section 6.

4 The Interpretation

We interpret the language in the category lD

p

. To do so we use an object in the sub-

category lD, which we call P, together with an appropriate morphism, i.e. a natural

transformation, for each combinator in the language. In the standard way, [6], we can

then associate with each typing judgement x ` p : P a morphism from N

x

to P in the

category lD

p

. Because of the nature of the objects N

x

these morphisms have a simple

representation in terms of environments. For any �nite subset s of N let ENV

s

be the

set of mappings from N to s. For �; �

0

2 ENV

s

let � =

x

�

0

if �(y) = �

0

(y) for every

name y in the vector x. Then the set of morphisms from (N

x

)

s

to P

s

, in the category

lSL

p

, is in one-one correspondence with the set of mappings from ENV

s

to P

s

which

preserve =

x

. In other words our semantics is equivalent to a family of interpretations

[[]]

s

:ENV

s

! P

s

Moreover naturality ensures that this is a uniform family of interpretations; the family

of domains fP

s

j s � N g comes equipped with translation morphisms (P

�

):P

s

! P

s

0

,

for each injection s

�

7�! s

0

and these translation morphisms also relate the interpretation

of terms in the di�erent domains:

[[p]]

s

0

(� � �) = (P

�

)([[p]]

s

� k

P

, a morphism from P
P

To complete our description of the interpretation we must exhibit the speci�c choice

domain P, an object in lD, together with the required morphisms. P is essentially a

functorial version of the Acceptance Tree model of [12], adapted to the �-calculus.

We let P be the initial solution to the equation

P

�

=

(A � (N

>

F) � (N

>

C))

?

F

�

=

N) P

C

�

=

(N
 P) +
s
(P)

In order to explain the intuition behind this equation let us consider the action of this

functor on an arbitrary object of I, a �nite subset s of N . P

s

is either the bottom

element ? or has three components:

� A

s

, an acceptance set over s+s, representing the initial nondeterministic behaviour

of a process. We require two copies of s in order to record both the input and

output potentials of processes. To emphasise this use of s+ s we let n?; n! denote

in

l

(n); in

r

(n) respectively, when applied to s+ s.

� (N

>

F)

s

, a �nite partial function from s to F

s

, representing the potential input

behaviour of a process on some �nite set of input channels. The objects in F

s

represent the functional behaviour of the process on receipt of an input. F is

isomorphic to (N) P) and so, as outlined in Section 2, F

s

is isomorphic to

F

s

(P). This encodes the subsequent behaviour of the process on receipt of any

name in s and on receipt of an arbitrary name not in s.

� (N

>

C)

s

another partial function from s to C

s

, representing the potential out-

put behaviour along a �nite number of output channels. The output behaviour

associated with each channel, in C

s

, is of two kinds:

{ (N
 P)

s

, a �nite non-empty function from s to P

s

, representing a �nite set

of pairs, each pair consisting of a name to be output along the channel and

an element of P

s

encoding

To de�ne the natural transformation in

P

as its trivial extension. So to complete the de�nition we must specify new

f

. Since

F is isomorphic to N) P, by de�nition, and we have the isomorphism
s
(N)

P) ' (
s
(N))

s
(P)) we can de�ne new

f

to be (up

N

) new).

� new

3

is de�ned in a similarmanner as the the trivial extension of id

N

>

new

c

+ �x:>

where new

c

is a natural transformation from
s
(C) to C.

s
(C) is

Informally these can be viewed as terms in the language (with the added constant
);

viewed in this manner �(x) : acts as a binding operator on acceptances and we will only

consider them up to �-conversion.

Acceptances are ordered as follows:

�
� a for every acceptance a

� a� b implies

{ n?x:a� n?x:b

{ n!x:a� n!x:b

{ �(x) : a� �(y) : b[y=x] for every y 62 fv(�(x) : a).

This ordering is lifted to sets of acceptances by:

A� B if for every b 2 B there exists some a 2 A such that a� b.

Sets of acceptances can be associated with elements of the domains P

s

and, be-

haviourally , with process terms of the language. We �rst consider the latter and to do

so we need some notation. The operational semantics is given in terms of a reduction

relation

�

�! between process terms. Here we need to describe the potential actions a

term can perform. There are three kinds of potential actions,

1. an input action

n?x

�!, as described in Section 3

2. an output action

n!x

�!, also as described in Section 3

3. a bound output action

�(z) : n!z

����!

We use Act , ranged over by �, to denote this set of potential actions. The bound output

action may be de�ned by:

p

�(z) : n!z

����! q; if p k n ?� y: y ! y : 0

�

�! �(z) : (q k z ! z : 0); where z 62 fv(p):

These are extended to sequences over Act by

� p

"

=) q if p

�

�!

�

q

� p

�:s

=) q if p

�

�!

�

�

�!

s

=) q

We write p * if p diverges, i.e. there is an in�nite sequence of derivations

p

�

�! p

1

�

�! : : : : : :

�

�! p

k

�

�! : : :

and p + if it converges, i.e. there is no such sequence. Finally let S(p) denote the subset

of the set of indications, Ind , de�ned by

fn? j p

n?x

==) for some x g [fn! j p

n!x

=) or p

�(x) : n!x

=====) for some x g:

With this notation we can now de�ne the behavioural acceptances associated with a

process term.

� p j=

b

 if p *

18

� p j=

b

A if p + and A = S(q) for some q such that p

"

=) q

� p j=

b

�:a if p + and q j=

b

� for some q such that p

�

=) q

Let Acc

b

(p) denote the set f a j p j=

b

a g. These sets characterise the behavioural

preorder v

must

:

Theorem 5.2 p v

must

q if and only if Acc

b

(p)� Acc

b

(q).

The proof of this theorem is given in Sub-section 5.3.

In a similar manner we can associate with each element d of the domain P

s

a set of

acceptances Acc

s

(d); the details are postponed until Sub-section 5.1 because the structure

of P

s

needs to be elaborated.

The following theorem is often called an internal full abstraction result as it gives an

alternative characterisation of identity in the model.

Theorem 5.3 For every d; e 2 P

s

, d � e if and only if Acc

s

(d)� Acc

s

(e).

The proof of this theorem will be given in the Sub-section 5.1.

The third major result relates the behavioural acceptances of a process term with

the acceptances of its denotation. In general these will not be identical. For example,

from the de�nition of Acc

b

s

to be given in the next sub-section, it turns out that the

only acceptance sets in Acc

b

s

(n !x : 0 + m ! y : 0) are fn!g and fm!g but fn!; m!g is also

in Acc

s

([[n !x : 0 +m ! y : 0]]

s

)id, where s = fn;mg. However the sets of behavioural

acceptances and denotational acceptances associated with process terms will coincide up

to the kernel of �. For two such sets A; B let A

�

=

B if A � B and B � A, i.e. for every

a 2 A there is some b 2 B such that b� a and conversely for every b 2 B there is some

a 2 A such that a� b.

Theorem 5.4 Suppose x

1

: : : x

k

` p : P . Then for every s such that x

i

2 s; Acc

b

(p)

�

=

Acc

s

([[p]]

s

id) where id 2 ENV

s

is any environment which is the identity on s.

Subsection 5.2 is devoted to the proof of this Theorem.

With these three results we can now give the proof of Theorem 5.1:

Let x be such that x ` p : P; x ` q : P and let s be such that x

i

2 s for every i. Then

p� v

must

q� () Acc

b

(p�)� Acc

b

(q�) by Theorem 5.2

() Acc

s

([[p�]]

s

id)� Acc

s

([[q�]]

s

id) by Theorem 5.4

() [[p�]]

s

id � [[q�]]

s

id by Theorem 5.3

() [[p]]

s

� � [[q]]

s

�

The last line is an application of the Substitution Lemma:

[[p�]]

s

id = [[p]]

s

(id � �):

19

5.1 Internal Full Abstraction

In this section we give the details of the internal full abstraction result for the model

P. In order to associate acceptances with elements of the domains P

s

we �rst need to

develop some notation for describing their various components.

As outlined in Section 2 for any functor H the predomain (N

>

H)

s

can be repre-

sented as (s * H

s

). Moreover if �:H

�

�!K then the action of the natural transforma-

tion (id

>

�):N

>

K

�

�! N

>

K at s is given, in terms of this representation, by

the morphism (N

>

H)

s

: (s * H)! (s * K), which can be described by �h:�

s

� h.

A representation for the domain (N) H)

s

was also brie
y touched upon in Sec-

tion 2. This takes the form of the collection of functions F

s

(H) with domain N . We can

also describe the actions of natural transformations in terms of these representations.

If �:H

�

�! K then the action of the natural transformation (id) �): (N) H)

�

�!

(N) K) at s is given by the morphism (id) �)

s

:F

s

(H) ! F

s

(K), described by

�f:�n:(�

s[fng

� f(n)).

The predomain C is isomorphic to (N
 P) +
s
(P) and it is also convenient to

develop a concrete representation for the predomains C

s

. We know that (N
 H)

s

can be represented by (s *

ne

H

s

) and
s
(H)

s

is determined by an a element of H

s[fyg

for an arbitrary y not in s. Combining both of these we obtain a representation of

((N
 H) +
s
(H))

s

as a partial function with domain N . Let PF

s

(H) be the set of

all non-empty partial functions f with domain a subset of N which satis�es

� f(n) 2 H

s[fng

� domain(f) � s is either ; or N � s

� for all n; m 2 domain(f) � s; f(n) = H

(id+m7!n)

f(m).

Functions in PF

s

(H) can be ordered in the standard fashion, for partial functions: f � g

if

� domain(g) � domain(f)

� for all n 2 domain(g); f(n) � g(n).

Under this ordering PF

s

(H) is a predomain isomorphic to ((N
 H) +
s
(H))

s

:

Moreover the actions of natural transformations can also be described in terms of this

representation. Let �:H

�

�! K. Then the action of the natural transformation

(id
 � +
s
(�)): (N
 H +

s
(H))

�

�! (N
 K +
s
(K))

at s is given by the morphism (id
 � +
s
(�))

s

:PF

s

(H) ! PF

s

(K) described by

�f:�n 2 domain(f):(�

s[fng

� f)n.

These representations will be useful in reasoning about elements of P. In particular

they can be used to develop a convenient notation for elements of P

s

. Let d be an

element of P

s

which is di�erent from ?. Then, modulo the isomorphisms unfold and

fold,

1. let A

s

(d) denote (�

1

� down)d; A

s

(d) is an acceptance set over s + s. Using the

convention that in

l

(n); in

r

(n) represent n?; n! respectively this can be taken to be

an acceptance set over Ind .

20

2. let d

?

denote (�

2

� down)d; using the representation given above d

?

is an element

of (s * F

s

).

3. let d

!

denote (�

3

� down)d which also can be taken to be an element of (s * C

s

).

With this notation we can now associate acceptances with elements of P

s

. For any

d 2 P

s

let

1. d j=

s

 if unfold(d) = ?

2. d j=

s

A if A 2 Acc

s

(d)

3. d j=

s

n?x:a if d

?

nx j=

s[fxg

a

4. for x 2 s; d j=

s

n!x:a if d

!

nx j=

s

a

5. d j=

s

�(y) : n!y:a if for some z 62 s; d!n z j=

s[fzg

a[z=y]

The uniformity of the family of domains P

s

means that satis�ability of acceptances

can be transferred from one to the other. Any s

�

7�! s

0

can also be viewed as a substitution

over names; it leaves untouched all those which do not appear in its domain s. So, viewing

acceptances as simple terms, this means that these injections can also be applied to

acceptances. With this notation we have

Proposition 5.5 If s

�

7�! s

0

then d j=

s

a implies P

�

(d) j=

s

0

a�.

Proof: By induction on the structure of a, by analysing the action of P

�

on the

representations of the components of P given above. 2

The most signi�cant properties of these acceptances are given in the following lemma:

Lemma 5.6

1. d j=

s

n?x:a if and only if d

?

nx j=

s[fxg

a

2. for x 2 s; d j=

s

n!x:a if and only if d

!

nx j=

s

a

3. d j=

s

�(y) : n!y:a if and only if for every m 62 s; d!nm j=

s[fmg

a[m=y]

Proof: The �rst two statements follow directly from the de�nitions. The third follows

from the previous Proposition, using the uniformity of the functions in PF

s

(P); in

particular the fact that f(n) = P

(s+m7!n)

f(m). 2

Let Acc

s

(d) denote the set f a j d j=

s

a g.

Proposition 5.7 For all d; e 2 P

s

; d � e implies Acc

s

(e)� Acc

s

(d).

21

Proof: It is straightforward to show by induction on a that 8 s8 d; e 2 P

s

; d � e; e j=

s

a implies d j=

s

a

0

for some a

0

� a. 2

The converse however is less straightforward as it depends on the fact that P is

the initial solution to it's de�ning equation. We refer the reader to [9] for the general

underlying theory but here we simply state the relevant characteristics of P. We de�ne

three families of natural transformations

pid

k

:P

�

�! P

�d

k

:F

�

�! F

cid

k

:C

�

�! C

as follows:

1. aid

0

= ?, i.e. for A = P;F;C aid

0

is the natural transformation whose action at

every s is given by the constant morphism �x:?

2. �d

k+1

= (id) pid

k

)

3. cid

k+1

= (id
 pid

k

) +
s
(pid

k

)

4. pid

k+1

= (id� (id

>

�d

k+1

)� (id

>

cid

k+1

))

?

We state without proof:

Theorem 5.8 For A = P;C;F;

W

k

(aid

k

) = id

A

. 2

With this characterisation of the domains we can now prove

Proposition 5.9 For all d; e 2 P

s

; Acc

s

(e)� Acc

s

(d) implies d � e.

Proof: From the previous Theorem it is su�cient to show that for all k; pid

k

s

(d) �

pid

k

s

(e). The case k = 0 is trivial and we prove the case k + 1 under the assumption

that it is true for k.

We may assume d 6= ? and since Acc(e) � Acc(d) this also means that e 6=

?. Using the representations developed above this means that down(pid

k+1

s

(d)) and

down(pid

k+1

s

(e)) may be taken to be

A

s

(d)� (�d

k+1

s

� d

?

)� (cid

k+1

s

� d

!

) and A

s

(e)� (�d

k+1

s

� e

?

)� (cid

k+1

s

� e

!

)

respectively. Now Acc

s

(e) � Acc

s

(d) means that [A

s

(e) � [A

s

(d) and therefore

A

s

(e) � A

s

(d), since the latter are acceptance sets. It remains to prove

�d

k+1

s

� d

?

� �d

k+1

s

� e

?

cid

k+1

s

� d

!

� cid

k+1

s

� d

!

As an example we prove the latter. Both cid

k+1

s

�d

!

and cid

k+1

s

� e

!

are partial functions,

using the representations above, and so we �rst must demonstrate that the domain of

cid

k+1

s

� e

!

is contained in that of cid

k+1

s

� d

!

. However this follows immediately from the

fact that Acc

s

(e)� Acc

s

(d) since n 2 domain(e

!

) if and only if e j=

s

n!x:a for some x; a.

22

So suppose n 2 domain(e!). We must show that

(cid

k+1

s

� d

!

)n � (cid

k+1

s

� e

!

)n

as objects inC

s

, i.e PF

s

(P). Using the representation of the action of functors described

above (cid

k+1

s

� d

!

)n; (cid

k+1

s

� e

!

)n work out to be

�m 2 domain(d

!

n):pid

k

(d

!

nm) and �m 2 domain(e

!

n):pid

k

(e

!

nm)

respectively. So we must prove

� domain(e

!

n) � domain(d

!

n).

For any m 2 s; m 2 domain(e

!

n) if and only if e j

X �X = X

X � Y = Y +X

(X � Y)� Z = X � (Y � Z)

X � Y � X

X +X = X

X + Y = Y +X

(X + Y) + Z = X + (Y + Z)

X + 0 = X

X + (Y � Z) = (X + Y)� (X + Z)

X � (Y + Z) = (X � Y) + (X � Z)

n ?�x:X + n ?�x: Y = n ?�x: (X � Y)

n !x :X + n !x : Y = n !x : (X � Y)

n ?�x:X + n ?�x: Y = n ?�x:X � n ?�x: Y

n !x :X + n !x

0

: Y = n !x :X � n !x

0

: Y

�(n) : (X + Y) = �(n) :X + �(n) : Y

�(n) : (X � Y) = �(n) :X � �(n) : Y

�(n) : n ?X = 0

�(n) : n !x :X = 0

�(n) :m ?� y:X = m ?� y: �(n) :X if n 6= y; n 6= m

�(n) :m ! y :X = m ! y : �(n) :X if n 6= y; n 6= m

�(n) : �(m) :X = �(m) : �(n) :X

(X � Y) k Z = (X k Z)� (Y k Z)

X k Y = Y kX

X +
 �

X k (Y +
) =

 � X

�(n) :
 =

recX : t = t[recX : t=X]

Figure 3: Equations

25

Let p; q denote

P

f pre

i

p

i

j i 2 I g;

P

f pre

j

q

j

j j 2 J g, where each pre

k

has the form

n!x or n?�y:, and assume that every bound variable is di�erent from the free variables

in p; q. Then

p k q =

(

ext (p; q) if comms(p; q) = false

(ext (p; q) + int(p; q))� int(p; q) otherwise

where

ext (p; q) =(

I

p � p

p � q; q � r

p � r

II

p

i

� q

i

op(p

1

: : : p

n

) � op(q

1

: : : q

n

)

op = +; �; k; �(n) :XS

Eq

p � q

for every instance of an inequation

�

p �

�

q

p = q

Input

p[z=x] � q[z=x] for all names z

n ?�x: p � n ?�x: q

If

p � q

if b then p else p

0

� if b then q else q

0

[[b]] = true

if b thenX elseY = X

p

0

� q

0

if b then p else p

0

� if b then q else q

0

[[b]] = false

if b thenX elseY = Y

Figure 5: The Proof System

Lemma 5.13 If x ` h : P , s contains all x

i

and id is any environment in ENV

s

which

is the identity on s then p + if and only if [[p]]

s

id 6= ?:

Proof: (Outline) First suppose p +. In this case we know that p has a hnf h and an

examination of the de�nitions of +

P

; �

P

shows that [[p]]

s

id is di�erent from ?.

The converse depends on the remark that for any recursion free process term d, if d *

then [[d]]

s

? = ?. This can be proven as follows: one can show by structural induction

on d that d * implies ` d =
 and since [[
]] = ? and the proof system is sound for the

interpretation [[]]

s

id this means [[d]]id= ?.

Now If.

s

id=(d R133ltat4d
(�)Tf
12
/R256 0.24n
[(since)-16000([)8 Tf
3.36016 0 �68008 Td
(s)Tj
/R256 0.24 Tf
3.80

sids

is sound with respect to � it follows that p +. 2

The syntactic structure of hnfs ensure that we can determine the various components

of their denotations. This is the topic of the next three Lemmas where we assume h is a

hnf of the form described in De�nition 2 above, such that x ` h : P and x

i

2 s for every

x

i

in x. For any � 2 ENV

s

; [[h]]

s

� 2 P

s

and we will see how the components of [[h]]

s

�

are determined by the syntax of h. For simplicity we assume that � is an injection.

Lemma 5.14 Acc

s

([[h]]

s

�) = �(A)

Proof: An examination of the de�nition of +

P

and �

P

as it applies to hnfs. 2

As an object in P

s

, [[h]]

s

� is di�erent from ? and therefore using the notation de-

veloped in Section 5.1 ([[h]]

s

�)

?

can be considered as an element in s * F

s

. For any

m? 2 [A; h

m?

is an abstraction term and therefore [[h

m?

]]

s

� 2 F

s

. If �(m) = n then

Lemma 5.15 ([[h]]

s

�)

?

n = [[h

m?

]]

s

�

Proof: Again a simple examination of the interpretation of hnfs . 2

In a similar manner ([[h]]

1. Suppose p j=

b

n?y:b. Let p

n?

have the form �x: t. This means that t[y=x] j=

b

b.

Applying induction we have

[[t[y=x]]]

s[fyg

id j=

s[fyg

b

0

for some b

0

such that b

0

� b. By the Substitution Lemma this means

[[t]]

s[fyg

(id[x 7! y]) j=

s[fyg

b

0

:

However if we calculate ([[p]]

s

id)

?

n, as an element of F(P

s

), using Lemma 5.15, we

obtain the function

�k 2 N :[[t]]

s[fkg

(id[x 7! k])

and so by de�nition [[p]]

s

id j=

s

n?y:b

0

.

All of these steps are reversible and therefore the converse also holds.

2. Suppose [[p]]

s

id j=

s

�(m) : n!m:b and for convenience let us assume that m 2 s. Using

Lemma 5.16 this means that for all z 62 s

sem

n!

(p)z j=

s[fzg

b[z=m]

In particular choosing z to be m we have

[[p

y

]]

s[fmg

(id[y 7! m]) j=

s[fmg

b:

Using the Substitution Lemma this means

[[p

y

[m=y]]]

s[fmg

id j=

s[fmg

b:

By induction there exists some b

0

� b such that p

y

[m=y] j=

b

b

0

and since p

�(m) : n!m

=====)

p

y

[m=y] it follows that p j= �(m) : n!m:b

0

.

Again these steps are reversible and thus the converse also holds.

2

We have used the proof system developed here only to reduce process terms to head

normal forms. However it is also possible to show that it is complete with respect to the

model, for recursion free terms. Speci�cally we can show, for any recursion free process

term d and any process term q, that ` d � q if and only [[d]]

s

id � [[q]]

s

id, where s is any

set including the free names occurring in d; q.

5.3 Behavioural Characterisation

The behavioural characterisation of process terms using acceptances depends on a de-

tailed analysis of the behavioural semantics. This was originally given in terms of a

reduction relation whose de�nition uses a structural equivalence and consequently it is

often not straightforward to derive it properties. However the following can be proved

by proof induction on the de�nition of

�

�!:

29

Lemma 5.18 p

�

�! q implies p�

�

�! q� for every substitution �.

The following lemma will assist with the behavioural analysis.

Lemma 5.19 p k q

�

�! r if and only if one of the following:

1. r � p

0

k q where p

�

�! p

0

2. r � p k q

0

where q

�

�! q

0

3. r � p

0

k q

0

where p

n?y

�! p

0

and q

n!y

�! q

0

4. r � (�(z) : p

0

k q

0

) for all z 62 fv(p; q) and

p

x?z

�! p

0

; q

�(z) : n!z

����! q

0

or q

x?z

�! q

0

; p

�(z) : n!z

����! p

0

2

For each acceptance set a we design a speci�c test t(a) with the property that

8a

0

� a:p 6j=

b

a

0

implies p must t(a):

The de�nition of the these tests actually requires two extra parameters, one a �nite set

of names, the other a �nite subset of Ind .

1. a =

t(a)

B

X

= 1:! (an abbreviation for ! � !)

2. a = A

t(a)

B

X

=

P

fn ! y : ! j n! 2 B g+

P

fn ?� y: ! j n? 2 B g

3. a = n?y:b

t(a)

B

X

= 1:! + n ! y : t(b

B

X[fyg

)

4. a = n!y:b

t(a)

B

X

= 1:! + n ?� z: if z = y then t(b

B

X

else!), where z 62 fv(t(b)

B

X[fyg

; y))

5. a = �(y) : n!y:b

t(a)

B

X

= 1:!+n ?� z: if z 2 X thenw else t(b

B

X[fyg

), where z 62 fv(t(b)

B

X[fyg

; y)) and

� A(Omega) = ;

� A(B) = B

� A(�:b) = A(b)

Proposition 5.21 If fv(p) � X then (8a

0

such that a

0

� a; p 6j=

b

a

0

) if and only if

there exists some B such that B \A(a) = ; and p must t(a)

B

X

.

� a = �(y) : n?

� n!x; n?x

� n?x; �(x) : n!x

� �(x) : n!x; n?x

for some x. Moreover we can assume that in the last two cases the particular bound

name x is chosen so that it is does not occur in fv(p). Further, because r

k

6

�

�! we

also know that S(q

m

) \ S(e

m

) = ;, where S = fn? j n! 2 S g [fn! j n? 2 S g. For

convenience let s denote the sequence of actions a

i

, S the set of indications S(q

m

) and a

the acceptance sS. Since p � q this means that p j=

b

b for some b� a.

There are now two cases to consider:

1. b has the form sT. By de�nition p

s

=) p

0

for some p

0

such that p

0

6

�

�! and S(p

0

) �

T � S. This computation, from p to p

0

can be zipped together with e

s

=) e

m

to

form a computation

ek

�

�! : : :

�

�! e

m

k p

0

The relevant features of this computation are �rstly that e

m

kp

0

6

�

�! and secondly it

only uses e

i

which occur in the original computation (�). It follows from p must e

that e

i

!

�! for some i.

2. b has the form s

0

 where s

0

is some subsequence of s. The approach of the previous

case also works here using the computation p

s

0

=) p

0

where p *.

We have not touched on the case when the computation (�) is in�nite. However this

can be treated in exactly the same manner as in Lemma 4.4.13 from [10]; we simply

need to know that, up to �same �!

least element. Moreover because of the degeneracy of much of the algebraic structure of

upper

� : (A�B)

�

�! C can be extended in an obvious way to a natural transformation in

(N

>

A�B)

�

�!N

>

C and let us use the non-standard notation N

>

� for this

extension.

Then the natural transformation ext: (P � P)

�

�! P is given by (par

A

� par

F

�

References

[1] S. Abramsky. A domain equation for bisimulation. Information and Computation,

92:161{218, 1991.

[2] S. Abramsky and C. Ong. Full abstraction in the lazy lambda calculus. Information

and Computation, 1989. to appear.

[3] Henk Barendregt. The Lambda Calculus. North-Holland, 1984. Studies in logic 103.

[4] M. Boreale and R. DeNicola. Testing for mobile processes. In Proceedings of CON-

CUR 92, 1992. To appear in Information and Computation.

[5] G. Boudol. A lambda calculus for (strict) parallel functions. Information and

Computation, 108:51{127, 1994.

[6] R. Crole. Categories for Types. Cambridge University Press, 1993.

[7] R. DeNicola and M. Hennessy. Testing equivalences for processes. Theoretical

Computer Science, 24:83{113, 1984.

[8] F.J.Oles. Type algebras, functor categories and block structure. In M. Nivat and

J. Reynolds, editors, Algebraic Methods in Semantics, pages 543{573. Cambridge

University Press, 1985.

[9] Carl Gunter. Semantics of Programming Languages. MIT Press, 1992.

[10] M. Hennessy. An Algebraic Theory of Processes. MIT Press, 1988.

[11] M. Hennessy. A Model for the � Calculus. Technical Report 8/91, University of

Sussex, 1991.

[12] M. Hennessy and A. Ingolfsdottir. A theory of communicating processes with value-

passing. Information and Computation, 107(2):202{236, 1993.

[13] D.J. Howe. Equality in lazy computation systems. In Proceedings of the 4th IEEE

Symposium on Logic in Computer Science, pages 198{203, 1989.

[14] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[15] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part i. Infor-

mation and Computation, 100(1):1{40, 1992.

[16] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part ii.

Information and Computation, 100(1):41{77, 1992.

[17] Robin Milner. The polyadic �-calculus: a tutorial. In Proc. International Summer

School on Logic and Algebra of Speci�cation, Marktoberdorf, 1991.

[18] Eugenio Moggi. Notions of computation and monad. Information and Computation,

93:55{92, 1991.

37

[19] E. Moggi, M.P.Fiore and D. Sangiorgi. A Fully-Abstract Model for the �-Calculus.

To appear in Proceedings of LICS'96, 1996.

[20] P.W. O'Hearn and R.D. Tennant. Semantics of local variables. In Applications

of Cate1 0 Tdgiorgi.

