
A Complete Axiomatisation for Timed Automata

Huimin Lin

Laboratory for Computer Siene

Inst. of Software, Chinese Aademy of Sienes

Email: lhm�ios.a.n

Wang Yi

Dept. of Computer Systems

Uppsala University

Email: yi�sd.uu.se

Abstrat

A proof system of timed bisimulation equivalene for timed automata is

presented, based on a CCS-style regular language for desribing timed au-

tomata. It onsists of the standard monoid laws for bisimulation and a set of

inferene rules. The judgments of the proof system are onditional equations

of the form �� t = u where � is a lok onstraint and t, u are terms denoting

timed automata. The proof of the ompleteness result relies on the notion

of symboli timed bisimulation, adapted from the work on value{passing pro-

esses.

1 Introdution

The last deade has seen a growing interest in extending various onurreny theo-

ries with timing onstruts so that real-time aspets of onurrent systems an be

modeled. Among them timed automata [AD94℄ has stood out as a fundamental

model for real-timed systems.

A timed automaton is a �nite automaton extended with a �nite set of real-

valued lok variables. A node of a timed automata is assoiated with an invariant

onstraint on the lok variables, while an edge is deorated with a lok onstraint,

an ation label, and a subset of loks to be reset after the transition. At eah node a

timed automaton may perform two kinds of transitions: it may let time pass for any

amount (a delay transition), as long as the invariant is satis�ed, or hoose an edge

whose onstraint is met, make the move, reset the relevant loks to zero, and arrive

at the target node (an ation transition). Although a timed automaton has only

�nite number of nodes, due to (real-valued) delay transitions it typially exhibits

in�nite-state behaviour. Two timed automata are timed bisimilar if they an math

eah other's ation transitions as well as delay transitions, and their residuals remain

timed bisimilar. The expliit presene of lok variables and resetting, features that

mainly assoiated with the so-alled \imperative languages", distinguishes timed

automata from proess aluli suh as CCS, CSP and their timed extensions whih

are \appliative" in nature and therefore more amenable to axiomatisation. By now

1

most theoretial aspets of timed automata have been well studied, but they still

lak a satisfatory algebrai theory.

In this paper we shall develop a omplete axiomatisation for timed automata,

in the form of an inferene system, in whih the equalities between pairs of timed

automata that are timed bisimilar an be derived. To this end we �rst propose a

language, in CCS style, equipping it with a symboli transitional semantis in suh

a way that eah term in the language denotes a timed automaton. The language has

a onditional onstrut �!t, read \if � then t", an ation pre�xing a(x):t, meaning

\perform the ation a, reset the loks in x to zero, then behave like t", and a

reursion �xXt whih allows in�nite behaviours to be desribed. The proof system

onsists of a set of inferene rules and the standard monoid laws for bisimulation.

Roughly speaking the monoid laws haraterize bisimulation, while the inferene

rules deal with spei� onstruts in the language. The judgments of the inferene

system are of the form

�� t = u

where � is a time onstraint and t, u are terms. Intuitively it means: t and u are

timed bisimilar over lok evaluations satisfying �. A typial inferene rule takes

the form:

GUARD

� ^ � t = u � ^ : � 0 = u

�� (!t) = u

It performs a ase analysis on the onstraint : !t behaves like t when is true,

and like the inative proess 0 otherwise. Note that the guarding onstraint of

 !t in the onlusion is part of the objet language desribing timed automata,

while in the premise it is shifted to the ondition part of the judgment in our meta

language for reasoning about timed automata.

A ruial rule, as might be expeted, is the one for ation pre�xing:

ACTION

�#

x

*� t = u

�� a(x):t = a(x):u

Here #

x

and * are post�xing operations on lok onstraints. �#

x

* is a lok on-

straint obtained from � by �rst setting the loks in x to zero (operator #

x

), then

removing up-bounds on all loks of � (operator *). Readers familiar with Hoare

Logi may notie some similarity between this rule and the rule dealing with assign-

ment there:

fP [e=x℄g x := e fPg

But here the operator #

x

is slightly more ompliated than substitution with zero,

beause loks are required to inrease uniformly. Also we need * to allow time to

pass inde�nitely.

A standard way to reasoning with reursion is to use, apart from the usual rule

for folding/unfolding reursions, the following unique �xpoint indution:

UFI

t = u[t=X℄

t = �xXu

X guarded in u

2

This rule was adopted in [Mil84℄ for a omplete axiomatisation of bisimulation equiv-

alene for regular pure-CCS. Here we use it in a quite di�erent ontext: terms in our

setting normally ontain lok variables, namely they are open terms. In spite of this,

it turns out that this rule is still sound and suÆient for a omplete axiomatisation

of regular behaviour, though the proof is slightly more ompliated than in the pure

aluli.

The ompleteness proof relies on the introdution of the notion of symboli timed

bisimulation, t �

�

u, whih aptures timed bisimulation in the following sense:

t �

�

u if and only if t� and u� are timed bisimilar for any lok evaluation � satisfying

�. Following [Mil84℄, to show that the inferene system is omplete, that is t �

�

u

implies ` � � t = u, we �rst transform t and u into standard equation sets whih

are the syntatial representations of timed automata. We then onstrut a produt

equation set out of the two and

x � 4

l

0

l

1

y := 0

^

y � 3

x � 5

x � 1

x := 0; y := 0

a

b

Figure 1: A Timed Automaton.

Consider the timed automaton of Figure 1. It has two ontrol nodes l

0

and l

1

and two loks x and y. A state of the automaton is of the form (l; < s; t >), where

l is a ontrol node and s and t are non{negative reals giving the values of x and

y. Assuming that the automaton starts to operate in the state (l

0

; < 0; 0 >), it

may stay in node l

0

for any amount of time, as long as the invariant x � 4 of l

0

is satis�ed. During this time the values of x and y inrease uniformly, at the same

rate. Thus from the initial state, all states of the form (l

0

; < t; t >) with 0 � t � 4

are reahable, but only at the states (l

0

; < t; t >), where t � 1, the edge from l

0

to

l

1

is enabled. When following the edge from l

0

to l

1

the ation a is performed to

synhronize with the environment and the lok y is reset to 0 leading to states of

the form (l

1

; < t; 0 >) where t � 1.

For the formal de�nition, we assume a �nite set A for synhronization ations

and a �nite set C for real-valued lok variables. We use a; b et. to range over A

and x; y et. to range over C. We use B(C), ranged over by �, et., to denote the

set of onjuntive formulas of atomi onstraints in the form: x

i

1 m or x

i

�x

j

1 n,

where x

i

; x

j

2 C, 12 f�; <;�; >g and m;n are natural numbers. The elements of

B(C) are alled lok onstraints.

De�nition 2.1 A timed automaton over ations A and loks C is a

Ation

a(x):t

tt;a;x

�! t

Choie

t

b;a;x

�! t

0

t+ u

b;a;x

�! t

0

Guard

t

 ;a;x

�! t

0

�!t

�^ ;a;x

�! t

� � � tt and t � a(x):t

0

tt;a;x

�! t

0

. Then (a(x):t

0

)�

a

�! t

0

�fx := 0g by ation and

� j= �.

� � � �

0

^ and t

In the following, \atomi onstraint" always means \atomi onstraint over C

with eiling N". Note that given two timed automata there are only �nite number

of suh atomi onstraints. We shall use to range over atomi onstraints.

A onstraint, or zone, is a boolean ombination of atomi onstraints. A on-

straint � is onsistent if there is some � suh that � j= �. Let � and be two

onstraints. We write � j= to mean � j= � implies � j= for any �. Note that the

relation j= is deidable.

A region onstraint, or region for short, over n lok variables x

1

; : : : ; x

n

is a

onsistent onstraint ontaining the following atomi onjunts:

� For eah i 2 f1; : : : ; ng either x

i

= m

i

or m

i

< x

i

< m

i

+ 1 or x

i

> N ;

� For eah pair of i; j 2 f1; : : : ; ng, i 6= j, suh that both x

i

and x

j

are not greater

than N , either x

i

�m

i

= x

j

�m

j

or x

i

�m

i

< x

j

�m

j

or x

j

�m

j

< x

i

�m

i

.

where the m

i

in x

i

� m

i

of the seond lause refers to the m

i

related to x

i

in the

�rst lause. In words, m

i

is the integral part of x

i

and x

i

�m

i

its frational part.

Given a �nite set of lok variables C and a eilingN , the set of region onstraints

over C is �nite and is denoted RC

C

N

. In the sequel, we will omit the sub- and super-

sripts when they an be supplied by the ontext.

Fact 1 Let � be a region onstraint. If � j= � and �

0

j= � then

� For all i 2 f1; : : : ; ng, if �(x

i

) � N then b�(x

i

) = b�

0

(x

i

).

� For any i; j 2 f1; : : : ; ng, i 6= j,

{ f�(x

i

)g = f�(x

j

)g i� f�

0

(x

i

)g = f�

0

(x

j

)g and

{ f�(x

i

)g < f�(x

j

)g i� f�

0

(x

i

)g < f�

0

(x

j

)g.

where bx and fxg are the integral and frational parts of x, respetively.

That is, two valuations satisfying the same region onstraint must agree on their

integral parts as well as on the ordering of their frational parts.

Lemma 3.1 Suppose that � is a region onstraint and a zone. Then either �)

or �) : .

Proof: We �rst transform into disjuntive normal form: =

W

i

V

j

e

ij

where

eah e

ij

is an atomi onstraint. Now ^ � =

W

i

V

j

(e

ij

^ �). It is easy to see, by

examining the possible forms of e

ij

, that eah e

ij

^ � is either equal to � or false.

Hene ^ � is either equal to � or false. In the former ase we have �) , and in

the later ase we get �) : . 2

Aording to this lemma, a region is either entirely ontained in a zone, or is

ompletely outside a zone. In other words, regions are the �nest polyhedra that an

be desribed by our onstraint language.

Fact 2 Let t, u be two terms with disjoint sets of lok variables and � a region

onstraint over the union of the two lok sets. Suppose that both � and

equalities between lok variables (the e

ij

omponent in the above de�nition), whih

guarantees the \same rate" requirement when suh onstraints are over the union

of the two lok sets.

Given a onstraint �, a �nite set of onstraints � is alled a �-partition if

W

� = �.

A �-partition � is alled �ner than another suh partition 	 if � an be obtained

from 	 by deomposing some of its elements. By the orollary to Lemma 3.1,

RC(�) is a �-partition, and is the �nest suh partition. In partiular, if � is a region

onstraint then f�g is the only partition of �.

De�nition 3.4 A onstraint indexed family of symmetri relations over terms S =

fS

�

j � is *�losed g is a symboli timed bisimulation if (t; u) 2 S

�

implies

1. � j= Inv(t), Inv(u) and

2. whenever t

 ;a;x

�! t

0

then there is a Inv(t) ^ � ^ -partition � suh that for

eah �

0

2 � there is u

0

;a;y

�! u

0

for some

0

; y and u

0

suh that �

0

)

0

and

(t

0

; u

0

) 2 S

�

0

#

xy

*

.

We write t �

�

u if (t; u) 2 S

�

2 S for some symboli bisimulation S. 2

Note that there is no lause for delay transitions in the de�nition, beause delays

are enoded in the *-loseness property of the indexing onstraints.

The use of a partition when mathing a symboli transition is essential. Without

it we will not be able to haraterise timed bisimulation using symboli transitions.

For example, onsider the two timed automata t

1

and t

2

below (we have omitted the

empty resets). They are apparently timed bisimilar. But the symboli transition

t

2

tt;a;fg

�! an not be entirely mathed by either of the two symboli transitions from t

1

.

We must use a partition, say fx � 1; x > 1g: t

1

an math the symboli transition

from t

2

using its left branh over the onstraint x � 1, and the right branh over

x > 1.

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

Proof: (=)) Assume (t; u) 2 S

�

2 S for some symboli bisimulation S. De�ne

R = f (t�; u�) j there exists some � suh that � j= � and (t; u) 2 S

�

2 S g

We show R is a timed bisimulation. Suppose (t�; u�) 2 R, i.e. there is some � suh

that � j= � and (t; u) 2 S

�

. By the �rst laus in De�nition 3.4, we have � j= Inv(t)

if and only if � j= Inv(u).

� t�

a

�! t

0

�

0

. By Lemma 2.3 there are ; x suh that � j= ^ Inv(t), �

0

=

�fx := 0g and t

 ;a;x

�! t

0

. So there is a � ^ -partition � with the properties

spei�ed in De�nition 3.4. Sine � j= � ^ , � j= �

0

for some �

0

2 �. Let

u

0

;a;y

�! u

0

be the symboli transition assoiated with this �

0

, as guaranteed by

De�nition 3.4. Then �

0

)

0

and (t

0

; u

0

) 2 S

�

0

#

xy

*

. Sine � j=

0

^ Inv(u),

u�

a

�! u

0

�fy := 0g. By Lemma 3.2, �fxy := 0g j= �

0

#

xy

. By Lemma 3.3,

�fxy := 0g j= �

0

#

xy

*. Therefore (t

0

�fxy := 0g; u

0

�fxy := 0g) 2 R. Sine

t

0

�fxy := 0g � t

0

�fx := 0g and u

0

�fxy := 0g � u

0

�fy := 0g, this is the same

as (t

0

�fx := 0g; u

0

�fy := 0g) 2 R.

� t�

d

�! t(� + d). Sine � is *-losed, � + d j= �. Then � + d j= Inv(u) and

hene u�

d

�! u(�+ d). Therefore (t(� + d); u(�+ d)) 2 R.

((=) Assume t� � u� for any � j= �

0

^ Inv(t) ^ Inv(u), i.e. (t�; u�) 2 R for some

timed bisimulation R, we show t �

�

0

u as follows. For eah *�losed �, de�ne

S

�

= f (t; u) j 8�

0

2 RC(�); (t�; u�) 2 R for any � j= �

0

^ Inv(t) ^ Inv(u) g

and let S = fS

�

j � is * � losed g. Then (t; u) 2 S

�

0

. S is well-de�ned beause

of Fat 2. We show S is a symboli bisimulation. Suppose (t; u) 2 S

�

. Consider

any �

0

2 RC(�). There exists � j= �

0

^ Inv(t) ^ Inv(u) suh that (t�; u�) 2 R.

Sine �

0

is a region it

They are so-alled \strutural rules" used to \glue" piees of derivation together.

Taking �

1

= �

2

PARTITION speialises to a useful rule

CONSEQUENCE

�

1

� t = u

�� t = u

� j= �

1

Let us write ` � � t = u to mean � � t = u an be derived from this proof

system.

Some useful properties of the proof system are summarised in the following

proposition:

Proposition 4.1 1. ` �!(!t) = � ^ !t

2. ` t = t+ �!t

3. If � j= then ` �� t = !t

4. ` � ^ � t = u implies ` �� !t = !u

5. ` �!(t+ u) = �!t+ �!u

6. ` �!t+ !t = � _ !t

7. For any t and u, ` f�gt = f�gu

Proof: We only give proofs for 1, 4 and 7, leaving the others to the readers.

We �rst prove a le/R123 08a:

S1 X + 0 = X S2 X +X = X

S3 X + Y = Y +X S4 (X + Y) + Z = X + (Y + Z)

Figure 5: The Equational Axioms

whih an be settled by EQUIV (plus CONSEQUENCE) and ABSURD, respe-

tively.

4. By GUARD, ` �� !t = !u an be redued to

� ^ � t = �!u and � ^ : � 0 = �!u

The seond subgoal is an instane of (1). For the �rst one we apply GUARD again

obtaining

(� ^) ^ � t = u and (� ^) ^ : � t = 0

Now the �rst subgoal follows from the hypothesis and the seond from ABSURD.

7. It is suÆient to prove ` f�gt = f�g0 for any t. By INV this an be redued to

` �� t = f�g0 and ` :� � f�g0 = f�g0. The �rst subgoal is settled by ABSURD

while the seond by EQUIV. 2

The following lemma shows how to \push" a ondition through an ation pre�x:

Lemma 4.2 ` �� a(x):f gt = a(x):f g�#

x

*!t.

Proof: By ACTION this an be redued to

�#

x

*� f gt = f g�#

x

*!t

An appliations of INV gives two subgoals:

�#

x

* ^ � t = f g�#

x

*!t (4)

�#

x

* ^ : � f�g0 = f g�#

x

*!t (5)

Apply INV again to (4) we get

�#

x

* ^ ^ � t = �#

x

*!t and �#

x

* ^ ^ : � t = f�g0

the �rst follows from Proposition 4.1.3, while the seond from ABSURD.

(5) an be settled similarly by an appliation of INV followed by EQUIV and

ABSURD. 2

The UFI rule, as presented in Figure 4, is unonditional. However, a onditional

version an be derived:

Proposition 4.3 Suppose X is guarded in u. Then from ` �� t = u[�!t=X℄ infer

` �� t = �xX�!u.

15

Proof: Assume ` � � t = u[�!t=X℄. By Proposition 4.1.4 we have ` �!t =

�!u[�!t=X℄, i.e.

` �!t = (�!u)[�!t=X℄

Sine X is guarded in u, it is also guarded in �!u. By UFI, ` �!t = �xX�!u.

Hene

` �!t

REC

= (�!u)[�xX�!u=X℄

= �!u[�xX�!u=X℄

= �!(�!u)[�xX�!u=X℄

REC

= �!�xX�!u

Therefore, by Proposition 4.1.4 again, ` �� t = �xX�!u. 2

The rule PARTITION has a more general form:

Proposition 4.4 Suppose 	 is a �-partition and ` � t = u for eah 2 	, then

` �� t = u.

Proof: By indution on the size of 	. The base ase when 	 ontains only one

element is trivial. For the indution step, assume the statement of the proposition

holds for �-partitions of size k and let 	 = f

i

j 1 � i � k+1 g. Set 	

0

= f:

k+1

^

i

j 1 � i � k g. Sine `

i

� t = u, by CONSEQUENCE ` :

k+1

^

i

� t = u.

Therefore by the indution hypothesis,

`

_

	

0

� t = u

From this and the assumption `

k+1

� t = u, by PARTITION we obtain

`

k+1

_

_

	

0

� t = u

Sine

k+1

_

_

	

0

=

k+1

_(:

k+1

^

_

1�i�k

i

) =

_

1�i�k+1

i

=

_

	 = �, this ompletes

the indution. 2

In the rest of this setion we disuss the soundness of the proof system. First

we show that the rule UFI is sound with respet to �. Following [Mil89℄ we use the

tehnique of bisimulation up to.

De�nition 4.5 A symmetri relation R is a timed bisimulation up to � if (p; q) 2 R

implies

� whenever p

d

�! p

0

then q

d

�! q

0

for some q

0

and (p

0

; q

0

) 2 R.

� whenever p

a

�! p

0

then q

a

�! q

0

for some q

0

and (p

0

; q

0

) 2� R �.

2

Note that the derivatives of delay transitions are required to be in the same relation,

while those of ation transitions are allowed to be related modular �.

16

Lemma 4.6 If R is a timed bisimulation up to � then R ��.

Proof: Let (p; q) 2 R and p

�

�! p

0

. We need to show that there is some q

0

suh

that q

�

�! q

0

and (p

0

; q

0

) 2 R. The ase when � is an ation is settled in the same

way as in the proof of Proposition 6, Setion 4.3, [Mil89℄. The ase when � is a

delay follows diretly from De�nition 4.5. 2

Lemma 4.7 If X is guarded in v and v[t=X℄

a

�! t

0

, then t

0

has the form v

0

[t=X℄,

and moreover, for any u, v[u=X℄

a

�! v

0

[u=X℄.

This lemma onerns only ation transitions and its proof is the same as that of

Lemma 13, Setion 4.5, [Mil89℄.

Proposition 4.8 Suppose fv(v) � fXg and X is guarded in v. If t� � v[t=X℄�

and u� � v[u=X℄� then t� � u�.

Proof: We show the relation

R = f (v[t=X℄�; v[u=X℄�) j fv(v)

De�nition 4.10 Two proesses p and q are timed bisimular up to d

0

2 R

�0

, written

p �

d

0

q, if for any d suh that 0 � d � d

0

� whenever p

d

�! p

0

then q

d

�! q

0

for some q

0

and p

0

�

� q

0

,

� whenever q

d

�! q

0

then p

d

�! p

0

for some p

0

and p

0

�

� q

0

.

where p

�

� q is de�ned thus

� whenever p

a

�! p

0

then q

a

�! q

0

for some q

0

and p

0

� q

0

,

� whenever q

a

�! q

0

then p

a

�! p

0

for some p

0

and p

0

� q

0

.

2

The di�erene between timed bisimulation up to d and the standard notion of timed

bisimulation only onerns initial delay transitions: in timed bisimulation up to d

two proesses are required

A term t provably �-satis�es an equation set E if there exist a vetor of terms

f t

i

j i 2 I g, eah t

i

being of the form f

0

i

gt

0

i

, and a vetor of onditions f�

i

j i 2 I g

suh that �

1

= �, ` �� t

1

= t, �

i

j= Inv(u

i

),

0

i

, and

` �

i

� t

i

= u

i

[f

0

i

g(�

i

!t

0

i

)=X

i

ji 2 I℄

for eah i 2 I. We will simply say \t provably satis�es E" when �

i

= tt for all i 2 I.

Proposition 5.1 For any guarded term t with free proess variables W there ex-

ists a standard equation set E, with free proess variables in W, whih is provably

satis�ed by t. In partiular, if t is losed then E is also losed.

Proof: By indution on the struture of t. The only non-trivial ase is reursion

when t � �xXt

0

with X guarded in t

0

. By indution there is a standard equation

set E

0

: fX

i

= u

i

j i 2 I g with free proess variables in FV (t) [fXg and t

0

i

: s

suh that ` t

0

= t

0

1

and

` t

0

i

= u

i

[t

0

i

=X

i

ji 2 I℄

We may assume that X is di�erent from any X

i

. Let v

i

= u

i

[u

1

=X℄ for eah i. Note

that sine X is under an ation pre�xing in t

0

, it does not our free in u

1

. Hene

v

1

= u

1

. Consider the equation set

E : fX

i

= v

i

j i 2 I g

To show t satis�es E, set t

i

= t

0

i

[t=X℄. Then

` t = �xXt

0

= �xXt

0

1

REC

= t

0

1

[�xXt

0

1

=X℄

= t

0

1

[t=X℄

= t

1

Now

` t = t

0

1

[t=X℄

= u

1

[t

0

i

=X

i

ji 2 I℄[t=X℄

= u

1

[t

0

i

[t=X℄=X

i

ji 2 I℄

= u

1

[t

i

=X

i

ji 2 I℄

and

` t

i

= t

0

i

[t=X℄

= u

i

[t

0

i

=X

i

ji 2 I℄[t=X℄

= u

i

[t; t

0

i

[t=X℄=X;X

i

ji 2 I℄

= u

i

[t; t

i

=X;X

i

ji 2 I℄

= u

i

[u

1

[t

i

=X

i

ji 2 I℄; t

i

=X;X

i

ji 2 I℄

= u

i

[u

1

=X℄[t

i

=X

i

ji 2 I℄

= v

i

[t

i

=X

i

ji 2 I℄

2

20

Proposition 5.2 For losed terms t and u, if t �

�

u then there exist a �

0

suh that

�) �

0

and a standard, losed equation set E whih is provably �

0

-satis�ed by both

t and u.

Proof: It easy to see that, using ruleUNG, any unguarded term an be transformed

into a guarded one, so we may assume both t and u are guarded.

Let the sets of lok variables of t; u be x; y, respetively, with x \ y = ;. Let

also E

1

and E

2

be the standard equation sets for t and u, respetively:

E

1

: fX

i

= f�

i

g

X

k2K

i

�

ik

!a

ik

(x

ik

):X

f(i;k)

j i 2 I g

E

2

: fY

j

= f

j

g

X

l2L

j

jl

!b

jl

(y

jl

):Y

g(j;l)

j j 2 J g

So there are t

i

� f�

0

i

gt

0

i

; u

j

� f

0

j

gu

0

j

with ` t

1

= t, ` u

1

= u suh that j= �

i

, �

0

i

,

j=

i

,

0

i

, and

` t

i

= f�

i

g

X

k2K

i

�

ik

!a

ik

(x

ik

):t

f(i;k)

` u

j

= f

j

g

X

l2L

j

jl

!b

jl

(y

jl

):u

g(j;l)

Without loss of generality, we may assume a

ik

= b

jl

= a for all i; k; j; l.

For eah pair of i; j, let

�

ij

= f� 2 RC(xy) j t

i

�

�*

u

j

g

Set �

ij

=

_

�

ij

. By the de�nition of �

ij

, �

ij

is the weakest ondition over whih

t

i

and u

j

are symbolially bisimilar, that is,) �

ij

for any suh that t

i

�

u

j

.

In partiular, �) �

11

. Also for eah � 2 �

ij

, � j= Inv(t

i

) , Inv(u

j

), i.e.,

� j= �

0

i

,

0

j

, hed
(a)Tj
/R257 0.12 Tf
6.12031 Td
(j)Tj
/32031 Td
()Tj
/R191 0.191 0.12 Tf
12.4801 0 Td
(u)Tj
/R12(with)Tj
/R193 0.12 Tf
26.6398 0 Td
(`)Tji;6 1.8 Td
(i)Tj
/R193 0.12 Tf
6.71992 -1.8 Td
(,)Tj2 Tf
8.04023 -1.8 d
(,)Tj
/R193 0.12 Tf
7.2 0 Td
(`)Tj
/0.12 Tf
8.0399/R123 0j
19.43 Td
(trans8 Td
(j)Tj
/R123 0.12 Tf
7.68008 -1.8 Td
(=)Tj
/R193 0.57 0
(,)Tj
/R
(for)Tj
 23 0.12 Tf
078 2 0 Td
(j)Tj�.92031 Td
(u)Tj
/R2d
(f)Tj
0.12 Tf
9I.3199 0 Td
(partiul1
/R257 0.8 Td
[(j)�f
0 7.31992 Td
(i)Tj
)Tj
66 77 0.12 Tf
8.4 1.8 Td
(ij)Tj
/R1)Tj
/2,let

�)a all2RC=ik

):X

f j

Let w

m+1

be �xX

m+1

�

m+1

!v

m+1

. We have

` �

m+1

� t

m+1

= w

m+1

[�

i

!t

i

=X

i

j1 � i � m℄

By Proposition 4.1,

` �

m+1

!t

m+1

= �

m+1

!w

m+1

[�

i

!t

i

=X

i

j1 � i � m℄

Now, writing w

i

for v

i

[�

m+1

!w

m+1

=X

m+1

℄, we have

` �

i

� t

i

= v

i

[�

i

!t

i

=X

i

j1 � i � m+ 1℄

= v

i

[�

i

!t

i

=X

i

j1 � i � m℄[�

m+1

!t

m+1

=X

m+1

℄

= v

i

[�

i

!t

i

=X

i

j1 � i � m℄[�

m+1

!w

m+1

[�

i

!t

i

=X

i

j1 � i � m℄=X

m+1

℄

= v

i

[�

m+1

!w

m+1

=X

m+1

℄[�

i

!t

i

=X

i

j1 � i � m℄

= w

i

[�

i

!t

i

=X

i

j1 � i �

in the timed world. This result agrees with the previous works on proof systems

for value-passing proesses [HL96℄ and for �-alulus [Lin94℄, providing a further

evidene that the four monoid laws apture the essene of

[DAB96℄ P.R. D'Argenio and Ed Brinksma. A Calulus for Timed Automata (Ex-

tended Abstrat). In FTRTFTS'96, LNCS 1135, pp.110-129. Springer{

Verlag. 1996.

[HL95℄ M. Hennessy and H. Lin. Symboli bisimulations. Theoretial Computer

Siene, 138:353{389, 1995.

[HL96℄ M. Hennessy and H. Lin. Proof systems for message-passing proess alge-

bras. Formal Aspets of Computing, 8:408{427, 1996.

[Lin94℄ H. Lin. Symboli bisimulations and proof systems for the �-alulus. Re-

port 7/94, Computer Siene, University of Sussex, 1994.

[LW00℄ H. Lin and Y. Wang. A proof system for timed automata. Fossas'2000,

LNCS 1784. Marh 2000.

[Mil84℄ R. Milner. A omplete inferene system for a lass of regular behaviours.

J. Computer and System Siene, 28:439{466, 1984.

[Mil89℄ R. Milner. Communiation and

