

2 David Teller

this study, we attempt to go further, by taking into account notions of
allocation, deallocation, reallocation of previously deallocated resources
and garbage-collection.

This document presents a process algebra based on the π-calculus, the
controlled π calculus, or cπ, built upon ideas previously expressed in the
previous incarnation of the controlled π

A π-calculus with limited resources, garbage-collection and guarantees 3

Processes P, Q ::= (νa : r)P | P |Q | i
Instructions i, j ::= 0 | new a : r in i | spawn i in j | a(b).i

| a〈b〉.i | !i | ifnull a then i else j
Contexts C[·] ::= (νa : r)C[·] | C[·]|P | P |C[·] | [·]

Figure 1. Syntax of cπ.

hence releasing resources. Complete enough garbage-collection schemes
may also free resources held by deadlocks or livelocks. As there are many
algorithms which may produce a garbage-collector and as, as we will see,
complete garbage-collection is an undecidable problem, we use a paramet-
ric relation �GC to determine when a channel may be removed.

This enriched π-calculus is both simpler and more generic than the
original cπ

4 David Teller

their π-calculus counterpart. As a syntactical shortcut, we will write −→a
for a1, a2 . . . , an and (ν−→a : −→r) for (νa1 : r1) . . . (νan : rn). The sets
fn/bn of free/bound names are defined as in the π-calculus – note that
fn((νa : r)i) = fn(new a : r in i) = fn(i) ∪ {a} and that } is always

A π-calculus with limited resources, garbage-collection and guarantees 5

R-Par
P −→pre P ′

P |Q −→pre P ′|Q
R-Label

P
α−→pre P ′

P |Q α−→pre P ′|Q

R-Comm
P

a(b)−→pre P ′ Q
a〈b〉−→pre Q′

P |Q −→pre P ′|Q′

R-Entity
P −→pre P ′

(νc : r)P −→pre (νc : r)P ′

R-Hide
P

α−→pre P ′

(νa : r)P
α−→pre (νx : r)P ′ a /∈ α

R-Equiv
P ≡ P ′ Q′ ≡ Q P ′ −→p1 -18.637 -27.849 cm
q
[]0 d
0 J
0.30

8 David Teller

destruction of names whenever they are not referenced anymore, in a man-
ner similar to that of the traditional π-calculus. Such a mechanism is
commonly found in programming languages, implemented as a reference-
counter in Python, Visual Basic or C++ frameworks such as Microsoft’s
Com or Mozilla’s XPCom. Note that this aspect of garbage-collection is
orthogonal to the management of printers themselves.

BRMDriver2 = !alloc(request).new destructor in .
new handler in .P op (x).(

| request〈handler, destructor〉.delete〈buf〉.!handler(y).x〈y〉
| destructor().delete〈destructor〉.delete〈handler〉.P ush x

)

The Garbage-Collection relation is the smallest �2 verifying

∀x,∀P, Q, {a : } �2 delete〈a〉.i | Q

Figure 6. A print spooler without dangling pointers

The process BRMDriver2 and the garbage-collection scheme �2, pre-
sented on figure 6, provide a more robust management of resources. Re-
lation �2 mimmicks a generic manual deallocator: any name a can be
destroyed by calling delete〈a〉. Since the destruction is handled by the
garbage-collector, the semantics of cπ guarantee that name a effectively
disappears.

The manager takes advantage of this deallocator to improve safety.
Instead of giving full control to the client, it transmits a (dynamically cre-
ated) handler, which can be revoked at any time by calling delete〈handler〉.
For this example, revokation only takes place when it is explicitely re-
quested through destructor. The printer can then safely be put back onto
the pool, without any risk of being reused by the client and without any
dangling pointers.

Although this strategy makes deallocation safer, it still does not work
whenever a client fails to call the destructor. As in modern program-
ming languages, such problems can be avoided using garbage-collection
and finalisation, as shown on figure 7.

Relation �3 defines a garbage-collection scheme, which supports a
mechanism similar to reference-counting, in which names can be removed
whenever they only appear in receptions or finalisations, as well as man-
ual deallocation of handlers using delete. The notion of finalisation, as
encountered in many garbage-collected programming languages such as

A π-calculus with limited resources, garbage-collection and guarantees 9

F inalize x.i = new loop : Loop in (!loop().ifnull x then i else loop〈〉 | loop〈〉)
BRMDriver3 = !alloc(request).new destructor in .

new handler : Handler in .P op (x).(
| request〈handler, destructor〉.!handler(y).x〈y〉
| destructor().0
| F inalize handler.P ush x

)

The Garbage-Collection relation is the smallest �3 verifying
∀x,∀P, x /∈ fv(P)⇒ {x} �3 P
∀x,∀P, Q, {x} �3 P ⇒ {x} �3 P | x(y).Q
∀x,∀P, Q, {x} �3 P ⇒ {x} �3 P | !x(y).Q
∀x,∀P, Q, {x} �3 P ⇒ {x} �3 P | F inalize x.Q

∀x,∀P, Q, {a : Handler} �2 delete〈a〉.i | Q

Figure 7. A garbage-collected print spooler

Java, C# or OCaml, and as defined here by F inalize x.i, triggers a func-
tion/method/process (here, i) in response to the deallocation of an entity
(here, x). Note that, as in our previous works [11], and by opposition to
these languages, finalisation is safe, insofar as resurrection of an entity [1]
is impossible. Also note that, by opposition to the first version of cπ,
finalisation is a macro rather than a primitive of the language.

Term BRMDriver3 takes advantage of the automatic garbage-collection
and finalisation: destructor and handler are automatically destroyed,
while finalisation premits returning the printer to the pool after the dal-
location of handler. This behaviour is more robust than that of either
BRMDriver1 or BRMDriver2 and could be rendered even more robust
by more complete garbage-collectors.

3.2 Error-handling

Let us consider the following scenario: a client has acquired a printer
but has started misbehaving, possibly by sending a stream of incorrect
instructions to that printer. Assuming that the spooler can detect such
a situation, it should stop the printing transaction and return the printer
to the pool. A number of other external reasons may require stopping the
printing transaction, such as lack of memory or prioritization of a specific
client.

These behaviours can be modelled easily, as shown on figure 8, by
modifying the garbage-collector to send signals representing the error/
exception. A signal ERR is sent to represent a non-deterministic client

10 David Teller

BRMDriver4 = !alloc(request).P op (x).new destructor in

new handler in new sigmem : MEM in new prio : P RIO in

new err : ERR in new flag : F lag in (
| request〈handler, destructor〉.!handler(y).x〈y〉
| destructor().0
| F inalize handler.ifnull prio then prioritize(c). · · · else P ush x

| F inalize err.delete〈handler〉
| F inalize prio.delete〈handler〉
| F inalize mem.delete〈handler〉

)

The Garbage-Collection relation is the smallest �4 verifying
{x} �3 P ⇒ {x} �4 P
{x : ERR} �4 P non-deterministically
res(P) � memory limit⇒ {signal : MEM} �4 P

{signal : P RIO, flag : F lag} �4 P | prioritize〈client〉 | flag〈〉

Figure 8. A garbage-collected print spooler with signal- and error-handling

error, a signal P RIO to represent a reprioritization, requested on channel
prioritize (flag serves to guarantee that only one transaction will be can-
celled), and a signal MEM is triggered whenever processes use too much
memory. In all three cases, the spooler destroys the handler, hence termi-
nating the authorization of the client. If the request was a prioritization,
the prioritized client receives a new handler, without going through the
queue. Otherwise, the printer is returned to the pool.

The process BRMDriver4 defines the responses of the spooler to these
signals. From the point of view of programming languages, F inalize err,
F inalize prio and F inalize mem are exception-handlers, comparable to
try · · · catch blocks, although in a concurrent setting.

4 Behaviours and properties

4.1 Properties of the language

Proposition 1 (cπ can contain π).
There is a ”good” encoding of the π-calculus to an instance of cπ.

We produce a simple encoding of a monadic synchronous π-calculus with
structural equivalence and guarded replication, without choice, with a set
of names not containing } , to an instance of cπ with the trivial set of re-
sources and a garbage-collector of unused names. This encoding preserves
termination, reduction, structure, distribution, structural equivalence and

A π-calculus with limited resources, garbage-collection and guarantees 11

barbs.

Proposition 2 (More resources give more freedom).
If S is a set of resources and if r and s are elements of S such that r ≺ s
then, for any garbage-collection scheme GC, −→GC

r (−→GC
r .

The inclusion derives directly from the definition of −→GC
r . The non-

equality can be proved by examining process (νa : s)(a(x) | a〈}〉), as this
process has no reduction in −→GC

r and one step of reduction in −→GC
s .

As in the π-calculus, we may observe behaviours of terms in cπ using
barbs and simulations.

4.2 Behaviours

Definition 4 (Barbs).

If P and P ′ are processes such that P
x()−→pre P ′ (respectively P

x〈 〉−→pre

P ′), we say that P has a barb x() (respectively x〈〉). Whenever P has a
barb α, we write P ↓α.

Definition 5 (Weak barbed simulation).
For a resource-aware instance of cπ on the set of resources S and with a
limit n, a relation R is a weak barbed simulation if, whenever (P, Q) ∈ R,

• if P ↓α, then Q ↓α

• if P −→GC
n P ′ then, for some Q′, Q −→GC∗

n Q′ andPP ; Q)e391 0.9ifreedomΓ923 0 -301(a)-293(r)1(e)-1(l)1(ati)]TJ/F8 9 9.9639Tf 49.919 0 Td[(R)]TJ/F68 9.963 Tf 11.361 0 81.955 gn1

12 David Teller

Definition 8 (Complete).
A garbage-collection scheme GC is complete if and only if it contains all
sound garbage-collection schemes.

Proposition 3 (Perfect garbage-collection).
Sound and complete garbage-collection is undecidable.

We prove this by examining process P = (νa : r)(a〈}〉 | a().Mb) where Mb

encodes a Turing machine and emits a message on channel b after termi-
nation. As a sound and complete garbage-collector must decide whether
P � Q, it must also decide whether Mb terminates, hence solve the halting
problem.

4.4 Properties of garbage-collectors

Proposition 4 (Print spoolers).
From the garbage-collectors presented in section 3, �1 is sound, while �2,
�3 and �4 are unsound. None is complete.

Soundness By definition, if {a} �1 P , a is not free in P , therefore
P{a ← }a} = P . We also have (νa : r)P ≡ P | (νa : r)0. We can prove
easily that P | (νa : r)0� P .

Unsoundness Let us write

P = (νhandler : Handler)delete〈handler〉 | handler〈a〉 | handler(x).x〈b〉
and

Q = delete〈}〉 | }〈a〉 | } (x).x〈b〉 .

We have {handler : Handler} �2 P and P −→ Q by garbage-collection.
Since P −→∗↓a〈〉 and Q¬ −→∗↓a〈〉, we conclude that P¬ � Q, hence �2

is unsound. The proof is identical for �3 and �4.

Uncompleteness None of these schemes will garbage collect (νa)a〈b〉.
Proposition 5 (Actual garbage-collection).
Informally, the Garbage-Collection of Jvm, .Net’s Cli or OCaml is un-
sound and incomplete.

Unsoundness All three platforms have unsafe weak references, which
can be dereferenced even when they point to null. Therefore, assuming
that weak is a weak reference, let us consider an extract such as

• Java/Jvm

String s = weak.get().toString();
out.println("Action");

• C#/Cli

A π-calculus with limited resources, garbage-collection and guarantees 13

string s = weak.get().target;
Console.WriteLine("Action");

• OCaml

match Weak.get weak 0 with
Some x -> print_endline "Action";;

If the garbage-collector has removed the object referenced by ref, a
null-pointer or match-failure exception will prevent the observable output
"Action" from being performed.

Incompleteness As garbage-collection relies purely on the analysis of
stack and heap, in the following example, the value of s is never recovered:

boolean value = true;
final String s = "useless";
while(value) ;
System.out.println(s);

5 A type system for resource guarantees

5.1 The system

The semantics of cπ are parametrized on a notion of resources. The mecha-
nism of parametric garbage-collection combined with the use of terms such
as F inalize permit to write systems which take into account allocation
of resources as well as deallocations. We now introduce a type system to
provide guarantees on the usage of such resources.

T ::= Bound(t, λ) r ∈ S, λ : N −→ r
N ::= Name(C, r) e ∈ S
C ::= Chan(N, g, λ) g ∈ S, λ : N −→ r
| Ssh

Judgement Γ ` P : Bound(t, λ) states that, under environment Γ,
P

14 David Teller

Figure 9 presents the rules of this type system. For the sake of read-
ability, we slighly alter the syntax to allow writing new a : N in · · · and
(νa : N). When necessary, we will write 0λ for the function defined on
N whose value is uniformly ⊥ and a 7→ r for the function defined on N
whose value is r for a and ⊥ for everything else.

Properties

Lemma 1 (Weakening).
If Γ is an environment and P a process such that Γ ` P : Bound(t, λ),

then, for any t′ � t and any λ′ � λ, we have Γ ` P : Bound(t′, λ′).

The proof of this lemma is trivial, as each rule of the type system
allows growing t and λ.

Theorem 1 (Subject Reduction).
If P is a process, if Γ ` P : Bound(r, λ) and P −→∗ P ′ then there is a r′

and a λ′ such that Γ ` Bound(r′, λ′) and r⊕Σx∈Nλ(x) � r′⊕Σx∈Nλ′(x).

To understand this, let us first consider the case where λ = 0λ. This
case corresponds to a system closed as far as resource deallocation is con-
cerned, as it does not reuse resources held by free names. In this case,
the property becomes r′ � r: the guaranteed bound on resources cannot
increase.

The more general case where λ is not necessarily 0λ also covers transi-
tory states between the deallocation of a name and the reuse of resources
previously held by that name.

The proof is detailed in the annex.

Theorem 2 (Resource control).
If S is a set of resources, if GC is a garbage-collection scheme, if P is a
process, if P −→GC∗

> P ′ and if Γ ` P : Bound(r, 0λ) then, for all r′ � r,
we also have P −→GC∗

r′ P ′.

16 David Teller

Proposition 7 (Print spooler). Typing the print spooler permits us
to determine the following properties:

• The spooler uses at most n printers.

• Each incoming call causes the allocation of at most one handler.

• There can be at most n handlers running at any time.

• The spooler allocates handlers only on demand.

• The spooler sends messages to the printer only when requested to do
so by a client.

The main idea is to use the set of resources N4 where Γ ` P :
Bound((p, h, k, m), λ) means that P uses resources to allocate at most
p printers, h handlers, k handlers and m messages. For this example, we
use both h and k to count handlers, respectively from the point of view of
the client and from that of the spooler – creating a handler uses resource
(0, 1, 1, 0).

Channel alloc serves to transfer resource (0, 1, 0, 0) from the client to
the spooler, while channel handler serves to transfer resource (0, 0, 0, 1)
from the client to the spooler and each printing channel p1, · · · , pn serves
to transfer resource (0, 0, 0, 1) from the spooler to the printer. Channel
printer transfers one resource (0, 0, 1, 0) from the pool to the spooler, for
allocation to a handler.

It is thus sufficient to check that

Γ ` BRMDriver4 | P ool : Bound((n, 0, n, 0), 0λ)

to prove the proposition. Conversely, a client will have type

Bound((0, h, 0, m), 0λ)

if it requests at most h printers/handlers and sends at most m messages.
Depending on the actual type of request, h can measure either the total
number of handlers allocated during the execution of the client or the
maximal number of handlers held at any time by the client, assuming that
the client uses finalization to recover the resources held by the handler.
By using a slightly more complicated set of resources, it is possible to
measure both properties at once

The typing derications themselves are long but straightforward.

5.3 Extending the type system

This version of the type system permits transferring resources from an
agent to another using a communication channel. This situation, however,
fails to take into account the fact that a process may charge for some

A π-calculus with limited resources, garbage-collection and guarantees 17

C ::= Chan(N, g, λg, p, λp) g, p ∈ S, λg, λp : N −→ r

Γ ` a : Name(Chan(N, g, λg, p, λp),)
Γ, b : N ` i : Bound(ti ⊕ g, λi ⊕ λg)

t′i � ti ⊕ p λ′i � λi ⊕ λp

Γ ` a(b).i : Bound(t′i, λ′i)
T-Rcv-Exchange

T-Snd-Exchange

Γ ` a : Name(Chan(N, g, λg, p, λp),)
Γ ` j : Bound(tj ⊕ p, λj ⊕ λp) Γ ` b

18 David Teller

language, it starts to deal with error-handling and it adds the notions of
transfer of resources.

Related works Other approaches of resource management have been
proposed. The BoCa [2] calculus is a variant of Mobile Ambients with
a notion of resources which can be dynamically transferred, acquired or
released. Our notion of resources held during the execution of a process,
in particular, is close to the corresponding notion of weight of a process
in that language, although that notion is part of the well-formedness of a
BoCa term and is central to the semantics of the calculus.

The Mobile Resource Guarantees [6] project builds on a linear type
system to provide guarantees of safe memory deallocation and reuse as well
as memory bounds in a single-threaded ML dialect. The Vault project [3]
uses in a multithreaded yet safe subset of C and a complex type system
to guarantee that resources are in a correct state whenever they are used.
TyPiCal [8] has comparable aims with the π-calculus. None of these works,
however, takes into account garbage-collection.

Several other, mostly dynamic, solutions have been offered, from Guardians
for Mobile Ambients [4] to JML or Spec#’s design-by-contract. These
works, however, fail to provide static guarantees, behavioral observation
of resources or to take into account deallocation and reuse.

Future developments As we mentioned, instructions such as spawn · · · in · · ·
and new · · · in · · · instanciate processes or resources and, in an implemen-
tation of cπ, would be accompanied by constructors. Although we have
not dealt with constructors for processes, a number of processes such as
the print spooler can be seen as constructors for resources, which brings a
number of question – firstly, if it is possible to write a constructor in cπ,
how such a constructor should be defined, invoked, and what properties
it should have.

Closely related is the question of transformation and composition of
resources. While some resources, such as hard drive space and perhaps
some authorizations, can be composed into bigger resources, and while
we can take this into account at the level of typing, at the level of the
language, we have no way of express such behaviour. Similarely, while
some resources can be transformed by operations – such as a file becoming
an opened file, our definition of resources is insufficient to model this.

We have started working on all these problems. Preliminary results
seem to indicate that the controlled π-calculus and its type system may
be adapted to take into account constructors, composition and transfor-
mations and to provide static guarantees based on the state of resources.

We have also started to investigate whether the notion of static re-

A π-calculus with limited resources, garbage-collection and guarantees 19

source exchange could be generalized to more than two participants, per-
haps using some form of n-ary communication as seen in the Join-Calculus [5]
or in the Kell-Calculus [9].

Garbage-collection schemes raise another series of questions. As we
have seen, our definitions of soundness and completeness of a garbage-
collector are too restrictive for common garbage-collectors such as those
found in Java, C# or OCaml. We thus hope to better criteria to classify
such services.

More importantly, we have observed that nearly all the garbage-collection
schemes we have been using in our examples, both in this document
and during our research, could be classified as simple cases of pattern-
matching. We wonder whether this observation can be generalized and if
a ”useful” set of garbage-collectors can be easily defined. In particular, we
have attempted to define stack-based as well as regions-based techniques
as instances of � and preliminary results lead us to believe in the feasibility
of the task.

References

[1] K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley,
1998.

[2] F. Barbanera, M. Bugliesi, M. Dezani, and V. Sassone. A calculus of bounded
capacities. In Proceedings of Advances in Computing Science, 9th Asian Comput-
ing Science Conference, ASIAN’03, volume 2896 of Lecture Notes in Computer
Science. Springer, 2003.

[3] R. DeLine and M. Fahndrich. Enforcing high-level protocols in low-level software.
In SIGPLAN Conference on Programming Language Design and Implementation,
2001.

[4] G. Ferrari, E. Moggi, and R. Pugliese. Guardians for ambient-based monitoring.
In V. Sassone, editor, F-WAN: Foundations of Wide Area Network Computing,
number 66 in ENTCS. Elsevier Science, 2002.

[5] C. Fournet and G. Gonthier. The reflexive cham and the join-calculus. In Pro-
ceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages. ACM Press, 1996.

[6] M. Hofmann. A type system for bounded space and functional in-place update–
extended abstract. Nordic Journal of Computing, 7(4), Autumn 2000. An earlier
version appeared in ESOP2000.

[7] H. P. Hofstee. Power efficient processor architecture and the cell processor. In
HPCA, pages 258–262. IEEE Computer Society, 2005.

[8] N. Kobayashi. TyPiCal: Type-based static analyzer for the pi-calculus.

[9] J.-B. Stefani. A calculus of kells. In V. Sassone, editor,AENCS7 Tf 24.616 0 Td[(3.0754(S)-1(pring)-ie)-vi1o 2.

A π-calculus with limited resources, garbage-collection and guarantees 21

Garbage-collection If P = (νa)0 and Q = 0 then [[P]]p = [[Q]]p.

Lemma 5 (Null values). For any P and p such that [[P]]p −→ ∗p, p
does not contain any occurrence of } .

Trivial.

Proposition 8 (Soundness). For all processes P and Q of the π-calculus
such that P −→ Q, we have [[P]]p −→ [[Q]]p.

22 David Teller

By induction hypothesis, we also have{
Γ ` i{x← a} : Bound(t⊕ r, λx←a

i)
Γ ` j{x← a} : Bound(t, λx←a

j)

Let us prove that the relation between λ′, λi and λj still holds after
substitution. Let us write Λ = λi ⊕ (x 7→ r).

For any z distinct of x and a, we have

λ′x←a(z) = λ′(z) � λj(z) = λx←a
j

and
λ′x←a(z) = λ′(z) � Λ(z) = Λx←a(z) .

We also have

λ′x←a(x) = λx←a
j (x) = Λx←a(x) = ⊥ .

Also,
λ′x←a(a) = λ′(x)⊕ λ′(a) �) .

A π-calculus with limited resources, garbage-collection and guarantees 23

Trivially, we have weight(Bound(t′, λ′)) � Bound(t ⊕ r, λi). Which
proves the case.

Communication Let us write
Γ, x : N ` i : Bound(t⊕ r, λ⊕ λa)
Γ ` a : Name(Chan(N, r, λa),)
Γ ` j : Bound(tj , λj)
Γ ` b : N

Typage de P

Typage de a(x).i

Γ, x : N `i : Bound(t⊕ r, λ⊕ λa) Par hypothse
Γ `a : Name(Chan(N, r, λa),) Par hypothse

⇒ Γ `a(x).i : Bound(t1, λ1) Par T-Rcv
Avec t1 � t

λ1 � λ

Typage de a〈b〉.j
Γ `j : Bound(tj , λj) Par hypothse
Γ `a : Name(Chan(N, r, λa),) Par hypothse
Γ `b : N Par hypothse

⇒ Γ `a〈b〉.j : Bound(t2, λ2) Par T-Snd
Avec t2 � tj ⊕ r

λ2 � λj ⊕ λa

Typage de P

Γ `a(x).i : Bound(t1, λ1) Cf. plus haut
Γ `: Bound(t2, λ2) Cf. plus haut

⇒ Γ `P : Bound(t3, λ3) Par T-Par
Avec t3 � t1 ⊕ t2

λ3 � λ1 ⊕ λ2

©

Typage de Q

Typage de i{x← b}
Γ, x : N `i{x← b} : Bound(t⊕ r, λ⊕ λa) Par hypothse
⇒ Γ `i : Bound(t⊕ r, λ⊕ λa) Par Substitution

Typage de Q

Γ `i{x← b} : Bound(t⊕ r, λ⊕ λa) Cf. plus haut
Γ `j : Bound(tj , λj) Par hypothse

Comme t3 ⊕ t1 ⊕ t2

24 David Teller

t2 � tj ⊕ r
t1 � t

Comme λ3 � λ1 ⊕ λ2

λ1 � λ
λ2 � λj ⊕ λa

⇒ Γ `Q : Bound(t3, λ3) Par T-Par

©

The case is proved.

Structure Proof of the various structural cases are identical to the
corresponding proofs in our previous works [13].

Garbage-collection Cases GC-Receive, GC-Send, GC-RReceive
and GC-RSend are trivial as Q is 0, which can always be typed, with
any type.

Case GC-Deallocate derives directly from the substitution lemma
(lemma 6).

The induction is thus proved. Hence the subject-reduction property.

C Resource control

Lemma 8 (Resource total). If Γ ` P : Bound(r, 0λ) then res(P) � r.

Trivial.

C.1 Main proof

From the Resource total lemma and subject-reduction, we conclude the
resource control theorem.

D Typing finalization

We have
Loop = Name(Chan(, r′, λ′),⊥)
Γ ` i : Bound(r ⊕ rn, λ)

r′ � r
λ′ � λ⊕ x 7→ rn

Typage de loop〈〉

A π-calculus with limited resources, garbage-collection and guarantees 25

Γ `0 : Bound(⊥, 0λ) Par T-Nil
Γ `loop : Name(Chan(, r′, λ′),) Par hypothse

⇒ Γ `loop〈〉 : Bound(r′, λ′) Par T-Snd

Typage de ifnull x then i else loop〈〉
Γ `loop〈〉 : Bound(r′, λ′) Cf. plus haut
Γ `i : Bound(r′ ⊕ rn, λ) Par hypothse

⇒ Γ `ifnull x then i else loop〈〉 : Bound(r′, λ′) Par T-Test-Nil

Typage de loop().ifnull x then i else loop〈〉
Γ `ifnull x then i else loop〈〉 : Bound(r′, λ′) Cf. plus haut
Γ `loop : Name(Chan(, r′, λ′),) Par hypothse

⇒ Γ `loop(). · · · : Bound(⊥, 0λ) Par T-Rcv

Typage de !loop().ifnull x then i else loop〈〉
Γ `loop(). · · · : Bound(⊥, 0λ) Cf. plus haut

⇒ Γ `!loop(). · · · : Bound(⊥, 0λ) Par T-Bang

Typage de !loop().ifnull x then i else loop〈〉 | loop〈〉
Γ `!loop(). · · · : Bound(⊥, 0λ) Cf. plus haut

Γ `loop〈〉 : Bound(r′, λ′) Cf. plus haut

⇒ Γ `!loop() · · · | loop〈〉 : Bound(r′, λ′) Par T-Par

Typage de F inalize x.i

Γ `!loop() · · · | loop〈〉 : Bound(r′, λ′) Cf. plus haut
⇒ Γ `(νloop : Loop)(· · ·) : Bound(r′, λ′)
©

