


2 William Ferreira, Matthew Hennessy and Alan Jeffrey

is given in terms of a reduction relation between configurations, multi-sets of λcv

closed expressions or programs. Unfortunately this operational semantics is not

compositional, in that the behaviour of a λcv expression, or indeed configuration,

is not determined by that of its constituents.

Here we give a compositional operational semantics in terms of a labelled

transition system for µCML programs. This not only describes the evaluation

steps of programs, as in [30], but also their communication potentials, in terms

of their ability to input and output values along communication channels.

We then proceed to demonstrate the usefulness of this compositional oper-

ational semantics by using it to define a version of weak observational equiv-

alence, [20], suitable for µCML. We prove that, modulo the usual problems

associated with the choice operator of CCS, our chosen equivalence is preserved

by all µCML contexts and therefore may be used as the basis for reasoning about

CML programs. In this paper we do not investigate in detail the resulting theory

but confine ourselves to pointing out some of its salient features; for example

standard identities one would expect of a call-by-value λ-calculus are given and

we also show that certain algebraic laws common to process algebras, [20], hold.

We now explain in more detail the contents of the remainder of the paper.

IN SECTION 2 we describe the language µCML, a subset of CML. It is a typed

language, with base types for channel names, booleans and integers, and type

constructors for pairs, functions and delayed computations; these last are called

Event types. It has the standard constructs and constants associated with the base

types and with pairs and functions. In addition it has a selection of the CML























24 William Ferreira, Matthew Hennessy and Alan Jeffrey

refinement, R̂























46 William Ferreira, Matthew Hennessy and Alan Jeffrey

[14] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

[15] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[16] Sören Holmström. PFL: A functional language for parallel programming. In Proc. Declarative

Programming Workshop, pages 114–139, 1983.

[17] Douglas Howe. Equality in lazy computation systems. In Proc. LICS 89, pages 198–203, 1989.

[18] Douglas Howe. Proving congruence of simulation orderings in functional languages. Unpub-

lished manuscript, 1992.


