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considering interaction between arbitrary processes, cf. Sections 3 and 4. An-

other technical interest would be the introduction of a simple way of measuring

expressive power, generation and minimality, which does not depend on the no-

tion of encodings.2 In spite of its simplicity, we show that the minimality result is

applicable to the establishment of several negative results on (the encodings into)

proper subsystems of this calculus, cf. Sections 4 and 5. We hope that these no-

tions would be useful to understand expressiveness of concurrent programming

languages in a formal way.

The structure of the rest of the paper follows. Section 2 introduces prelimi-

nary definitions and shows the finite generation theorem with a new quick proof.

Section 3 proves the main theorem, the minimality of the concurrent combina-

tors. The results in the next two sections are established using this theorem.

Section 4 identifies expressive power of several significant proper subsystems of

this asynchronous calculus, related to three important elements in name-passing:

locality, sharing of names and synchronisation. Section 5 then shows there is

no semantically sound encoding of the whole calculus into its proper subsystem
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PROPOSITION 2.1. (weak bisimilarity) (i) � is a congruence relation [16], and

(ii) P� Q then P +

al

, Q +

al

.

2.2 Concurrent Combinators

Concurrent combinators are tractable and powerful self-contained proper subset

of the asynchronous π-terms, just as S and K are of λ-calculi. Atomic agents are

formed from atoms by connecting “ports” to real “locations” (names), and their
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For the simple example, let R
def

� (νa)(m(ab) j (bl(ab) jm(ac))). Then R=1
def

�

m(ab) j (bl(ab) jm(ac)) and R=1 � 2 � 1
def

� bl(ab). In the following, we define

which pair of combinators are needed to create a new combinator.

DEFINITION 3.9. (a needed redex pair)

(1) Let ∆ be a tuple of occurrences, say ∆ = hu1; u2i, and write P
∆

�! P0 if

P
τ

�! P0





18 Nobuko Yoshida

PROOF. By s(abc)� (νe)(sm
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begin with the formulation of separation.

DEFINITION 4.1. (separation) Assume P is essential w.r.t. Y and X . Y nfPg.

Then we say a subsystem P = fQ j Q � R 2 X+

g is separated by P from a

subsystem P0

= fQ j Q� R 2Y+

g. We also say P is a proper subsystem of P0.

By the main theorem and lemma 3.2, we have

LEMMA 4.2. (separation) The maximum set separated by c from Pπ, denoted

by P

nc = fP j P � Q 2 (Cnc)+g, is a proper subsystem of Pπ. Moreover with

c 6= m, P

nc is a t-subsystem.

4.1 Local π-calculus

The asynchronous π-calculus was originally considered as a simple formal sys-

tem for concurrent object-based computation with asynchronous communication

[22, 23, 21], regarding av as a pending message and ax:P as a waiting object. But

it includes a non-local future which is prohibited in most of object-oriented lan-

guages, cf.[21]. Consider the following example.

(νb)(ab jbx:P) jax:xy:Q �! (νb)(bx:P jby:Q)

The left hand-side process represents an object which will send the object id b

to another object. After communication, the other object with the same id b is

created, violating the standard manner of the uniqueness of object id. To avoid

such a situation in a simple way, we restrict the grammar of receptors as follows.

ax:P (x 62 fs

#

(P))

We call this calculus local π-calculus (written πl for short) and write Pl for the

set of terms.6

Here we briefly observe that this system can be regarded as an independent

powerful subsystem. First we note that it is a t-subsystem. Next by the same

way in [22, 25], local polyadic input agent a(ṽ):P and output agent a[ṽ]:P can be

encoded in (monadic) πl-calculus.

ā[v1::vn]:P
def

= (νc)(ac jcz:(zv1 jcz:(:: jcz:(zvn jP)::)))

a(x1::xn):P
def

= ay:(νc)(yc jcx1:(yc j ::(yc jcxn:P))))

with z, c, and y all fresh. Local branching structures are embedded without in-

stantiation of input subject following the technique of [22] again. One important

remark here is that, using these encodings, the weak call-by-value λ-calculus

can be simulated in this subsystem by slightly changing the encoding in [34] as

6
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respectively. Note PLin ( PAf ( Pπ.7 Then a natural question is what expressive-

ness relation lies between with/without parallelism and/or sharing. In particular,

is there any difference between linear and affine name-passing? For answer-

ing these questions, we also decompose prefixes of these calculi into a system

of combinators. Since d(abc) cannot be used directly to represent non-sharing

communication, we here introduce the following simple new combinator, called

1-distributer.

d1(abc)

def

= (νd)ax:(bx jcd)

Intuitively this is similar with combinators B = λxyz:x(yz) and C = λxyz:(xz)y in

linear and affine λ-calculi [12, 1]. d1 distributes two messages while forwarding

only one value, hence this has the same parallelism as d, but not sharing.

In the following, we first clarify the difference between parallelism and non-

parallelism, introducing the notion of parallel distributer.

DEFINITION 4.4. (parallel name passing) Let us assume a 6= b;c. We say

P is a parallel distributer at a to b and c if (1) :P + f " for all f and (2)

(P jm(ae))

l

=)

l0
=) and (P jm(ae))

l0
=)

l

=) where l = be or b(e) and l0 = ce0

or c(e0) with bn(l)\bn(l0) = /0.

It is clear that d(abc) and d1(abc) are parallel distributors at a to b and c.

Now we formulate causality of dependency on reduction relations by a se-

quence of needed redex pairs.

DEFINITION 4.5. (independence) Assume P0
∆0

�! P1
∆1

�! P2
∆2

�! �� �

∆n�1

�! Pn

where n� 1 and c1;2(ṽ1;2)

def

� Pn=u1;2 with u1 6= u2. We say a sequence of needed

redex pairs ∆i0 � ∆i1 � �� � � ∆im for c1(ṽ1) is independent from a sequence of

needed redex pairs ∆ j0 � ∆ j1 � �� � � ∆ jm0

for0
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and P

nd � PAf � Pπ are given by (i). For PLin ' PAf, we have PLin . PAf by

Fact 2.3 (i). For the converse inclusion, we note s(abc) 62 PLin but we have

s(abc)� ax:by:(cy j (νb)bx). Then we use Lemma 3.16.

REMARK 4.9.

� We have observed that d(abc) represents two roles in a concise way: sharing

of names and increment of parallelism, and extraction of parallelism from it

gives rise to two proper π-calculi. For further examination of parallelism, it is

proved that 0-distributer d0(abc)

def

= ax:(νee0)(be jce0) can not be generated

in Pccnd and can not generate d1 by Proposition 4.7. More exactly, we have:

Cnd � Cnd[fd0(abc)g � CAf, but a proper subset generated by Cnd[

fd0(abc)g seems to have no interest.

� Causality of communication in π-calculus was studied based on parametric

labelled transition systems in [13, 54, 7] from more general viewpoints. On
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ax:by:xy� by:ax:
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abstract (i.e. [[P]] � [[Q]] , P � Q) or adequate (i.e. [[P]] � [[Q]] ) P � Q)

[25, 22, 40, 44, 6]. One of the most intriguing questions related to our present

study in this context is: if we miss any one of 5 combinators, i.e. in any proper

subsystem of C, is it absolutely impossible to construct any “good” encoding

of Pπ? This section shows the minimality theorem is applicable to derive sev-

eral non-existence results of encodings: there is no uniform, reasonable [44],

reduction-closed [24, 52] encodings of the whole asynchronous π-calculus into

(1) any proper subsystem of the asynchronous π-calculus studied in Sections 3

and 4, assuming the message/transition preserving conditions, and (2) a proper

subsystem without a message or without a duplicator (without any additional

condition). (2) shows that parallelism can not be taken away to embed
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PROPOSITION 5.4. Assume P1 and P1 are subsystems and P1 . P2. Then there

is a fully abstract standard mapping from P1 into P2. Hence we have P1 .

e P2.

PROOF
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(2) (sharing of names) There is no standard encoding from Pπ to any subsystem

of PAf, hence PAf �

e Pπ.12

(3) (full abstraction) There is no fully abstract standard encoding (up to �)

from Pπ into any proper subsystem P� C.

(1) and (2) would make sure that the synchronisation in the asynchronous π-

calculus is indeed a minimum one and sharing of names is inevitable to con-

struct various communication structures, e.g. polyadic name-passing. Together

with (1) in Proposition 5.6, (3) would be proved by showing that if a standard

encoding from the asynchronous π-calculus is not message-preserving, then it

is not fully abstract up to �. This would be extended to a more general state-

ment: there is no fully abstract standard encoding from polyadic into monadic

name-passing.13

REMARK
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6 Discussion

6.1 Summary of the Results

This paper proposed the basic formal framework for representability, generation

and minimal basis, and investigated that computational elements found in 5 com-

binators [25, 26] are essential to express the asynchronous monadic π-calculus

without summation or match operators. 5 combinators can generate the whole

behaviour of the calculus, and any of them should not be missing for the full

expressiveness. This minimality result clarifies basic nature of our combinators.

We also studied several interesting proper subsystems of the asynchronous π-

calculus which are separated by combinators. All main results hold based on

any of synchronous and asynchronous bisimilarities and synchronous and asyn-

chronous reduction-based equalities. Figure 1 summarises this separation result
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Local π-calculus

Two remarks are due for Proposition 5.6 (1) concerning with local π-calculus.

First, in [6], Boreale recently established an interesting result which shows

power of the local asynchronous (polyadic) π-calculus: there is an encoding from

(polyadic) π-calculus to polyadic local (asynchronous) π-calculus which satisfies

the stronger property than (3) in Definition 5.1 and which is fully abstract up to

the weak barbed bisimilarity. But this result does not contradict Conjecture 5.10

(3) since:

(1) It is not fully abstract up to barbed congruence (hence not up to � either).

See Appendix E for a counterexample. Note as discussed in 3.2 in [52] and

Sec 6 in [24], barbed bisimulation itself is weak as a canonical equality,

e.g bx:0 is equated to bx:av in it.

(2) Even under the barbed bisimilarity, we do not know whether there is a

fully abstract encoding from the asynchronous π-calculus into monadic

πl-calculus because he uses the power of polyadic name passing (hence

Pl '

e Pπ is only adequately related).

(3) It is not message-preserving, while all fully abstract encodings in (i) in
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� As we discussed in Section 5 and the above, much still remains to be done on

the study of existence or non-existence result of adequate and fully abstract

encodings. For example, Boreale’s result on local π-calculus [6] lets us know

a possibility to construct various kinds of standard encodings. This also sug-

gests that there is some difficulty to solve the negative result about encod-

ings. Based on this observation, the most interesting but difficult open prob-

lem may be Conjecture 5.10 (1). This would reveal that the asynchronous

π-calculus may be considered as a “basic π-calculus” containing sufficient

power for interactive computation in a minimal tractable syntax.

� Related with this, our result in Section 4 tells us that all computable functions

can be expressed in the local π-calculus. More interestingly, the encoding
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(ina, τ) and (alh,out,rep,par,res,open) in Definition A.2 replacing
l

�! with
l

�!a.

(ina) 0
ab

�!a ab (τ):
P

τ
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For the rule (II), we use a relation R of (iii) in Proposition B.2. Suppose

ax:(P1 jP2)

ab

�! (P1fb=xgjP2fb=xg). Then

a�x:(P1 jP2)

ab

�!� (νc1c2)(m(c1b) jc�1x:P1 jm(c2b) jc�2x:P2)

def

=
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(i) (a) a?x:(P jQ) � a?x:P jQ with x 62 fn(Q) and (b) a?x:b?y:P � a?x:b?y:P

with x 6= b; y 6= a

(ii) a?x:P jm(av)�!� Pfv=xg.

(iii) P� Q ) a?x:P� a?x:Q.

PROOF. (i) is by induction on P. For (a), we first prove a?x:P � k(a) jP with

a 62 fn(P). (b) is done with (a). (ii) is proved by rule induction on a?x:P. For

(iii), we only have to think the input case. Suppose P1 � P2. Then by (ii) above,

a?x:Pi
av

�! P0

i � Pifv=xg, but by Proposition 2.1 (i), we have P1fv=xg� P2fv=xg,

hence P0

1 � P0

2, as desired.

This proposition is important.

PROPOSITION D.2. .

(i) fn(P) = fn([[P]]), fs
l

(P) = fs

l

([[P]]), and an

l

(P) = an

l

([[P]])

(ii) For any substitution σ, [[Pσ]]�α]])

Pi

=[[R10 81512 10.1808 Tf
0 1 -1 1 0 238.491808 Tf
0 1-849.995326(i)Tj
/R12 
/R10 10.(�)Tj
/R12 10.1808 Tf
0 1 -1 0 95.9652 100.956 Tm
[(Q)5.33326]TJ
/R26 0.16968 Tf
0 1 1 0 95.9652 114.021 Tm
())Tj
/R12 10.1808 T68 T0711 0 95.9652 �895 0 Td
(an)Tj
/R37 0.16968 T8 T07111 0 92.402 134.892 Tm
(?)Tj
/R12 10.1808 Tf
0 1 -1T8 T071112 139.134 Tm
[(x)-60.983(done)-30(s)5 143 1 0 9596.486 Tm
[(])6999.55(])]TJ
/R26 0.16968 T8 T071116963827.004(i)-5.33326(s)-310.983(done)-305.984(w)18 T07111.956()xdone]]]? lPP?xdones=]]


