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with each other using a form of instantaneous exchange of messages called hand-

shake communication. Each individual process in a program may be viewed as

a straightforward imperative program working on its own memory, with assign-

ment statements, boolean tests, iteration, etc.

Subsequently, although some work was done on the semantics of this lan-

guage, [FLP 84], most of the research e�ort was devoted to semantic theories

of more abstract versions, such as theoretical CSP, TCSP, [BHR 84], [Plo 82]

andCCS, [Mil 89]. These languages, often refered to as process algebras, di�er

signi�cantly from the original CSP. For example TCSP may be viewed as an

applicative language. There is no store nor assignment statement and no values

may be transmitted between processes; they only communicate by synchronising

on signals. Nevertheless this area of research has been very fruitful. Semantic
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The language is described in detail in Section 2.1 where it is compared with

Occam and, in particular, the version of Occam used in [HR 88] and [Ros 87].

1.2. Denotational Models

A standard model for TCSP is the failure-sets model described, for example in

[BHR 84]. It consists of suitable collections of pairs of the form (s;X) where

s is a trace of actions which the process can perform and X is a �nite set of

actions which it can subsequently refuse. A further component of the model also

contains information about possible internal divergences.

This model has been adapted in [Ros 87] in order to interpret a subset of Oc-

cam. The adaptation is two-fold: the �rst to handle the communication of values

and the second to handle stores. Values are accommodated by using actions of

the form c:v where c is a channel name and v is a value. Intuitively this action

represents the passage of the value v along the channel c. Stores are incorporated

by extending that part of the model which records possible internal divergences.

Whereas previously it consisted simply of the traces of a process which could

lead to divergence, it also now includes those traces which lead to successful

termination and the resulting store.

There are two major problems associated with this extended model, both

connected with the treatment of value-passing. The �rst is that the allowed set

of values must be �nite for otherwise the semantic operators would no longer be

continuous. Although in practice a given program will only ever use a �nite set

of values, it is conceptually very restricting to limit the possible values usable

in a programming language to be �nite. The second arises from the form of the

actions, c:v. Processes input values from channels or output values to channels

and these are di�erent actions. In [Ros 87] they are modelled by the same action,

c:v which merely records the passage of v along c. This is possible because the
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private store and the only access to this store is by communication with the

process. From this point of view the two processes

(x := 1):c?x:P

and

(x := 2):c?x:P

are behaviourally identical; although they have di�erent e�ects on their private

memory, this di�erence is not discernible to any external observer or, indeed,

any larger system which uses them as subprocesses. Of course it would be quite

di�erent if, after updating its private memory, there is a subsequent possibility

of communicating the e�ect of this update. So, for example, the processes

(x := 1):c!x:STOP

and

(x := 2):c!x:STOP

will be distinguished in the model. But in general there is no need to record

the sequence of store transformations carried out by a process as it receives and
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which is supposed to be a choice between two behaviours, one which outputs the

value of x, which is 0, and the other which updates the store. Our solution to this

problem is given in Section 3.1 where we present the operational semantics. This

is followed in Section 3.2 by a de�nition of testing and the associated preorder.

Finally, in Section 3.3, we prove that our model is fully-abstract.

2. The Language and its Model

In this section we introduce our language and describe its denotational seman-

tics. The section is divided into �ve subsections: In the �rst one we give the

syntax of the language and some example programs. In x2.2 we describe a gen-

eral mathematical model for the language in terms of natural interpretations

and then in x2.3 we give a brief introduction to one such model, the so-called

Strong Acceptance Trees [HI 89], which is a modi�cation of the model Strong Ac-

ceptance Trees introduced in [He 85] and [He 88]. In x2.4 we de�ne syntactically

and semantically �nite approximations of programs and show that the denota-

tional interpretation is completely decided by these. In the last subsection we

de�ne a proof system and prove its soundness and completeness with respect to

the model.

2.1. Syntax

Our language, V PLA, (a Value-Passing Language with Assignment) is an ex-

tension of the applicative concurrent language, V PL, introduced in [HI 89]. We

have added the imperative construct assignment but only as a form of pre�xing.

As we want to compare our language with the existing concurrent programming

language Occam we omit renaming.

The language is therefore a slight modi�cation of Occam although we use a

di�erent more abstract syntax. The main di�erences are that beside the usual

external choice or alternation operator ALT , which in our setting is called +,

we have an internal choice operator �. Further we have the restriction in our

language that sequential composition is not allowed in general but only as a pre-

�xing of the input/output actions or of an assignment statement. The operator

nc plays the role of a local declarations of channels
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t ::= op(t

1

; : : : ; t

k

); op 2 �

k

j P j pre:t j recP:t j be! t; t

pre ::= c!e j c?x j x := e

Fig. 1. Syntax

and a boolean expression, FV ar(be), to be prede�ned. We let Chan denote a

prede�ned set of channel names, ranged over by c.

The allowed operators in the syntax are STOP , and 
 of arity 0, nc of arity

1 and �, + and j of arity 2. We use � to denote this collection of operators and

�

k

those of arity k. We also need a prede�ned set of process names, PN , ranged

over by upper-case letters such as P , Q, etc. The set of terms is then de�ned by

the BNF-de�nition given in Figure 1.
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iii) in

D

: (Chan � (V al �! D)) �! D is a total function continuous in its

second argument, where V al �! D inherits the natural pointwise ordering

from D.

Given such a natural interpretation, D, we can de�ne a semantic interpre-

tation of VPLA following the usual approach of denotational semantics. We

let Env

D

be the set of D-environments, i.e. mappings from PN to D, ranged

over by � and St the set of stores, mappings from V ar into V al, ranged over

by �. We assume evaluation functions [[ ]] : Exp �! (St �! V al) and

[[ ]] : BExp �! (St �! fT; Fg). Then the semantics of the language VPLA is

given as a function:

D[[ ]] : VPLA �! (Env

D

�! (St �! D))

and is de�ned by structural induction on VPLA:

i) D[[P ]]�� = �(P )

ii) D[[op(t)]]�� = op

D

(D[[t]]��)

iii) D[[recP:t]]�� = Y �d:D[[t]]�[d=P ]�

iv) D[[be! t; u]]�� = D[[t]]�� if [[be]]� = T

D[[u]]�� if [[be]]� = F

v) D[[c!e:t]]�� = out

D

(c; [[e]]�;D[[t]]��)

vi) D[[c?x:t]]�� = in

D

(c; �v:D[[t]]��[v=x])

vii) D[[x := e:t]]�� = D[[t]]��[[[e]]�=x]

where Y is the least-�xpoint operator for continuous functions over D.

2.3. Acceptance Trees

In this subsection we will give a brief description of the mathematical model

called Strong Acceptance Trees, or just Acceptance Trees, introduced in [He 85]

and explained in more detail in [He 88]. Then we will explain the modi�ed

version, which models the value-passing calculus V PL in [HI 89]. The de�ni-

tion of the pure version assumes a set of \pure" actions, Act which processes

can perform. Further we need the notion of saturated sets. Thus a �nite set,

A � P

fin

(Act), where P

fin

(Act) is the family of �nite subsets of Act, is said to

be saturated if it satis�es the following conditions:

1.

S

A 2 A

2. A;B 2 A and A � C � B implies C 2 A.

The set of all saturated subsets of P

fin

(Act), all saturated sets over Act, is

denoted by sat(Act). A saturated set over Act is called an acceptance set. The

saturated closure, c(A), of a �nite set, A � P

fin

(Act) is de�ned as the least set

which satis�es

1. A � c(A)

2.

S

A 2 c(A)
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3. A;B 2 c(A) and A � C � B implies C 2 c(A).

It follows easily from the de�nition, that c(A) is the least saturated set, which

includes A.

Finite acceptance trees are rooted �nite branching trees of �nite depth. Each

node is either open or closed. Each closed node is labelled by an acceptance

set, A, where each set, A, in A models a state the process can reach internally

or without performing any visible action. The actions in A are those which the

process can perform when in that state. The arcs leading from a node are labelled

by the actions which occur in the acceptance set labelling the node.
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1. D = (H(
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We also need a de�nition of AT

v

n

, the Acceptance Trees of depth and func-

tional size n. We let Fin

n

(V al �! D) = ff 2 Fin(V al �! D)jf(v) =

? whenever v 62 V

n

g and G

n

fin

= Fin

n

(V al �! D) ] Fin(V al * D).

De�nition 2.3.2. We de�ne AT

v

(n)

by induction on n by

1. f?g 2 AT

v

(n)

for all n

2. if A 2 sat(Ev) and f :

S

A �! G

n

fin

(V al; AT

(n)

) then (A; f) 2 AT

v

(n+1)

.

We have the following result:

Lemma 2.3.1.

1. AT

v

0

� AT

v

1

� � � � �

v

1Tj
 0.670 0.24 Tf
9.1199(if)Tj
/R270 12R270 16.2 0 Td
[(A)-398 -3.6 Td
(v)Tj
/R376 0.2

1Tj
470 0.24 Tf
9.1199(if)Tj
/R2707Tf
33.8 0.24 Tf=4 Tf
10.0801 7.439168 0

vR376 0.299.4(ha)1000. Tf
-1.44023 6 Td
(1)Tj
/R270 0.24 Tf
9.11
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By induction (f(e))(v) � (f

m(e;v)

(e))(v) for some m(e; v) for all e 2

S

A

and v 2 domain(f(e)). As domain(f(e)) and

S

A are �nite, the set E =

f(e; v) j e 2

S

A; v 2 domain(f(e))g is �nite. We can therefore de�ne

N = maxfm(e; v) j (e; v) 2 Eg

and we get easily that f � f

N

and the result follows.

Next we will prove that fAT

v

are the only �nite elements in AT

v

. For this

purpose for any T 2 AT

v

we de�ne T

(n)

, the projection of T on AT

v

(n)

. This we

do in the following way:

1. T

(0)

= ?

2.a ?

(n+1)

= ?

2.b (A; f)

(n+1)

= (A; f

(n)

); n = 1; 2; : : :

where f

(n)

(c?) is de�ned by

(f

(n)

(c?))(v) =

�

(f(c?)(v))

(n)

if v 2 V

n

? otherwise

and f

(n)

(c!) is de�ned by

domain(f

(n)

(c!)) = domain(f(c!)) \ V

n

(f

(n)

(c!))(v) = ((f(c!))(v))

(n)

for v 2 domain(f

(n)

(c!))

By an easy induction we get that T

(n)

2 AT

v

(n)

and that T

(0)

� T

(1)

� � � �T

(n)

�

T for all n. We will prove that T is the lub for the chain. To do so we have to

refer to some general results about initial solutions in CPO ([Plo 81]).

Now we recall the standard de�nition of T

n

, the n-th approximation of T :

1. T

0

= ?

2.a ?

n+1

= ?

2.b (A; f)

n+1

= (A; f

n

); n = 1; 2 : : :

where f

n

(c?) is de�ned by

f

n

(c?) = (f(c?)(v))

n

and f

n

(c!) is de�ned by

domain(f

n

(c!)) = domain(f(c!))

(f

n

(c!))(v) = ((f(c!))(v))

n

for v 2 domain(f

n

(c!))

Note that the nth approximation, T

n

, is in general not a �nite element of the

model. From the general theory we know that T =

F

n

T

n

. Furthermore we can

show that

F

n

T

(n)

=

F

n

T

n

. The \�" part follows from the obvious fact that

T

(n)

� T

n

for all n. We get the \�" part by showing that T

m

�

F

n

T

(n)

for all

m by induction on m as follows:

1. T

0

�

F

n

T

(n)

is obvious

2. Now we want to prove for any T that T

m+1

�

F

n

T

(n)

given the statement

is true for m. If T = ? we are done so assume T has the form (A; f). Then

T

m+1

= (A; f

m

) and T

(n)

= (A; f

(n�1)

) for n = 1; : : :. We also can easily

prove that

F

n

(A; f

(n)

) = (A;

F

n

f

(n)

) where

F

n

f

(n)

is de�ned by
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terms" to distinguish them from the usual syntactically �nite terms. We will in

the following de�ne formally the semantically �nite terms and then show that

they denote exactly the �nite elements in the model, i.e. fAT

v

.

De�nition 2.4.1. We de�ne the set of semantically �nite terms as the least set,

SF , which satis�es:

1. STOP;
 2 SF
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case c?x:t as in the �rst case we have (c?x:t)

n

= c?x:t

n

. We will now show that

the interpretation of a term in AT

v

is completely de�ned by the meaning of

the semantically �nite approximations of the term. This is the content of the

following theorem:

Theorem 2.4.1. For all t 2 V PLA; � 2 St and � 2 Env

[[t]]�� =

G

n

[[t

(n)

]]��

Proof. The proof is very similar to the corresponding one for Theorem 4.2.11

in [He 88]. As there we proceed by structural induction. The only case which is

di�erent is t = c?x:u and will therefore be given in detail.

By de�nition of [[ )
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X � (Y � Z) = (X � Y )� Z

X � Y = Y �X

X �X = X

X + (Y + Z) = (X + Y ) + Z

X + Y = Y +X

X +X = X

X + STOP = X

pre:X + pre:Y = pre:(X � Y )

c?x:X + c?x:Y = c?x:X � c?x:Y

c!e:X + c!e

0

:Y = c!e:X � c!e

0

:Y

X + (Y � Z) = (X + Y )� (X + Z)

X � (Y + Z) = (X � Y ) + (X � Z)

X � Y v X

X + 
 v 



 v X

(X � Y ) n c = X n c� Y n c

(X + Y ) n c = X n c+ Y n c

(pre:X) n c =

�

pre:(X n c) if c 6= chan(pre)

STOP otherwise

STOP n c = STOP


 n c = 


(X � Y ) jZ = X j Z � Y j Z

X j (Y � Z) = X j Y �X j Z

STOP jX = X j STOP = X

X j (Y +
) = (X +
) j Y = 


Fig. 2. Equations

processes, the interpretation in the model is independent of the store and the

environment and thus we can may write [[p]] instead of [[p]]��.

The proof system is equationally based and is given in Figure 5 and the

equations are given in Figure 2, 3 and 4. In the interleaving law in Figure 4

the predicate comms(X;Y ) is de�ned to be true if X and Y can communicate

and false otherwise. So it is true only if there is a pair a

i

; b

j

of complementary

actions, one of the form c?x and the other c!e. In Rule V of Figure 5 we use � to
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(x := e):STOP = STOP

(x := e):
 = 


(x := e):X � Y = (x := e):X � (x := e):Y

(x := e):X + Y = (x := e):X + (x := e):Y

(x := e):X jY = (x := e):X j (x := e):Y

(x := e):c!e

0

:X = c!e

0

[e=x]:(x := e):X

(x := e):c?y:X = c?y:(x := e):X; x 6= y; y not free in e

(x := e):be! X;Y = be[e=x]! (x := e):X; (x := e):Y

Fig. 3. Equations for Assignment

range over arbitrary substitutions of terms for variables. As usual we de�ne v

E

as the least relation which satis�es the rules and equations in Figures 2-5, and

t =

E

u means t v

E

u and u v

E

t.

The system is basically the same as the one for the applicative language V PL

in [HI 89]. We only have added equations, Figure 3, to reason about assignment

and one new inference rule, the second part of rule VII in Figure 5, to assure

substitutivity for assignment. In Figure 3 the assignment pre�xing does not af-

fect the meaning of the processes STOP and 
. This re
ects our ideas that

stores and therefore bindings of variables to values can only be investigated by

communication. Thus changing the value binding of a variable does not a�ect

the process if it is not able to output the value of that variable. Further as-

signment distributes over the operators + and j which re
ects our ideas of each

subcomponent of the system having their private store only accessible by others

via communication.

The new rules allow us to remove the assignments from any �nite term and

prove it equal to an assignment free �nite term, i.e. a term in V PL.

Lemma 2.5.1. For all �nite d 2 V PLA there is a �nite d

0

2 V PL such that

d = d

0

.

Proof. Follows easily by structural induction on d and a repeated use of the

equations in Figure 3 and Rule IX.

Another signi�cant di�erence from the proof system in [HI 89] is the de�-

nition of the �nite approximations t

(n)

in the !-rule (rule VI) as they are now

only allowed to use a �nite number of values. In [HI 89] we de�ned the n-th

approximation of the term c?x:u by (c?x:u)

n

= c?x:u

n

. Then we proved the

completeness of the proof system by means of normal forms and head normal

forms. We could have used the same procedure for the completeness proof in
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LetX, Y denote

P

fa

i

:X

i

; i 2 Ig,

P

fb

j

:Y

j

; j 2 Jg where the same data variables

do not occur in X and Y . Then

X j Y =

�

ext(X;Y ) if comms(X;Y ) = false

(ext(X;Y ) + int(X;Y ))� int(X;Y ) otherwise

where

ext(X;Y ) =

P

fa

i

:(X

i

j Y ); i 2 Ig +

P

fb

j

:(X j Y

j

); j 2 Jg

int(X;Y ) =

P

� fX

i

[v=x] j Y

j

; a

i

= c?x; b

j

= c!vg

�

P

� fX

i

j Y

j

; [v=y] a

i

= c!v; b

j

= c?yg

Fig. 4. Interleaving Law

I t v t

t v u; u v v

t v v

II

t

i

v u

i

op(t) v op(u)

for every op 2

P

III

t v u

c!e:t v c!e:u

t[v=x] v u[v=x] for every v 2 V

c?x:t v c?x:u

IV

t v u

recP:t v recP:u recP:t = t[recP:t=P ]

V

t v u

t� v u� t v u

for every equation t v u

VI

8n:t

(n)

v u

t v u

VII

[[e]] = [[e

0

]]

c!e:t = c!e

0

:t

[[e]] = [[e

0

]]

x := e:t = x := e

0

:t

VIII

[[be]] = T

be! t; u = t

[[be]] = F

be! t; u = u

IX

c?x:t = c?y:t[y=x]

if y does not occur free in t

Fig. 5. Proof System
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this case; instead we have chosen to de�ne the n-th approximations t

(n)

in this

slightly di�erent way which can be seen in De�nition 2.4.2. Unlike in the previous

paper t

(n)

is semantically �nite and thus the new !-rule

8n: t

(n)

v u

t v u

re
ects the !-algebraicness in the model. We can therefore use the completeness

of the old system for �nite terms and then take advantage of the !-algebraicness

of the model to prove the completeness in the general case.

Obviously the original de�nition of �nite approximations, t

n

in [HI 89], dom-

inates the new ones, i.e. we can prove that for all t 2 V PLA, t

(n)

v

E

t

n

without

using the !{rule and therefore the new !-rule implies the original one

8n: t

n

v u

t v u

The new system is thus stronger than the old one, and a completeness for the

old one implies completeness for the new one. We will take advantage of this fact

to prove the completeness of the new proof system.

We end this section by stating and proving the soundness and completeness

of the system for processes with respect to AT

v

. We start with the soundness.

Theorem 2.5.1. (Soundness) For all t; u

t v

E

u implies [[t]] � [[u]]:

Proof. The soundness is already proved for most of the rules and equations in

[HI 89]. The soundness of the !-rule is the content of Theorem 2.4.1 and the

soundness of the remaining ones is obvious.

For the completeness we start by proving the result for �nite processes and

then show how the general result follows from this as an easy corollary.

Lemma 2.5.2. For all �nite d

1
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Lemma and the !-algebraicity of the model. Thus assume that [[p]] � [[q]].

From Lemma 2.4.1 we get that [[p]] =

F

n

[[p

(n)

]] and [[q]] =

F

n

[[q

(n)

]]. Therefore

F

n

[[p

(n)

]] �

F

n

[[q

(n)

]] which implies that

8k: [[p

(k)

]] �

G

n

[[q

(n)

]]

As [[p

(k)

]] is a �nite element of the model we have

8k9m: [[p

(k)

]] � [[q

(m)

]]:

By the already proved completeness for �nite terms

8k9m: p

(k)

v

E

q

(m)

:

As we know that q

(m)

v

E

q this implies

8k:p

(k)

v

E

q

and the result follows from the !-rule.

3. Operational Semantics and Full Abstractness

In this section we de�ne an operational semantics for our language and introduce

the notion of testing. The operational semantics is de�ned in such a way that it

captures our intuition of the behaviour of processes or con�gurations described in

the introduction, i.e. that each subprocess of a system has its own private store

only accessible by other processes by means of communication. For a further

justi99.3(in)999.59(n.nesult)-19(wn)-14000.6dhunicatioay-dibl of
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In following this standard approach a problem arises when we have to deal

with these operators. In both cases each of the components can update the store

internally and thus a�ect the variable bindings for the other. Let us have a look

at an example. We use the notation �[x

1

=v

1

; : : : ; x

n

=v

n

] for the store �

0

de�ned

by �

0

(x) = v

i

if x = x

i

; i = 1; : : : ; n and �

0

(x) = �(x) otherwise. Let
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choice outlined in the introduction. Furthermore this solution coincides with the

de�nition of the denotational semantics in the sense that there the stores are

distributed over the operators and assignment in one component does not have

any in
uence on the semantics of another component.

In the followingwe will try to formalise these informal ideas of the operational

behaviour of processes, or more precisely con�gurations.

As motivated above, we need to introduce external choice and parallel com-

position between con�gurations. Thus more complex con�gurations are built up

from the basic ones, which only consist of a pair of a term and a store. To

simplify the rules for the operational semantics we also introduce the operators

�, nc and pre�xing for con�gurations. This leads to the following de�nition of

con�gurations:

De�nition 3.1.1. The set of basic con�gurations, BCon, is de�ned as:

BCon = fht; �i j t 2 V PLA; � 2 Stg:

Now we de�ne the set of con�gurations, Con, as the least set, which satis�es

1) BCon � Con

2) ht; �i 2 BCon implies pre:ht; �i 2 Con

3) � 2 Con implies op(�) 2 Con

for all op 2 �

1

�

1

; �

2

2 Con implies op(�

1

; �

2

) 2 Con)2
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1: c?x:ht; �i

c?v

�! ht; �[v=x]i for any v 2 V al

c!v:ht; �i

c![[e]]

�! ht; �i

2: �

a

�! �

0

implies �+ �

a

�! �

0

� + �

a

�! �

0

3: �

a

�! �

0

implies � j �

a

�! �

0

j �

� j �

a

�! � j �

0

4: �

a

�! �

0

implies � n c

a

�! �

0

n c

if name(a) 6= c

Fig. 7. Rules for

a

�!

Lemma 3.1.1. For all � 2
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To simplify reasoning about the operational behaviour we give an alternative

characterisation of

<

�

M

in terms of the operational semantics of con�gurations.

This is essentially the same as the alternative characterisation in [HI 89]. As

there the actions are of the form c?v or c!v and when representing internal states

using acceptance sets we need only remember the names of the channels along

which an output can be sent or an input received but not the actual values

themselves. As in x2.3 these will be called events.

Ev = fc! j c 2 Chang [ fc? j c 2 Chang:

Now acceptance sets will be �nite collections of �nite sets of events. Note the

di�erence to the acceptance sets in the de�nition of the Acceptance Trees. Here

the acceptance sets are not necessarily saturated.

To de�ne the alternative characterisation we need some notation, taken di-

rectly from [HI 89].

� For s 2 Act

�

de�ne �

s

=) �
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of it to demonstrate how the existing proofs can be reused with con�gurations

in the role of processes.

Theorem 3.2.1. For all �, � 2 Con

��

M

� if and only if
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Then � must b(s; B) where B = fb

1

; : : : ; b

n

g, but � m6 ust b(s; B) because of the

unsuccessful computation

b(s; B)j� �!

�

b("; B)j


where �

s

=) 
 and S(
) = A.

As a corollary to the theorem we have the following:

Corollary 3.2.1.

<

�

M

over con�gurations is preserved by all the operations in

�.

Proof. Similar to the proof for the corresponding result in [HI 89].

3.3. Full Abstractness

This last subsection is devoted to the proof of the full abstractness for con�gura-

tions of the denotational model AT

v

with respect to the testing preorder

<

�

M

.

First we have to extend the de�nition of the interpretation of terms to that of

con�gurations. We write [[ ]] instead of AT

v

[[ ]].

De�nition 3.3.1. The semantics of con�gurations is given as a function:

[[ ]] : Con �! (Env

D

�! D)

de�ned by:

i) [[ht; �i]]� = [[t]]��

ii) [[op(�)]]� = op([[�]]�):

Also the de�nition of the �nite approximations extends to con�gurations in the

obvious way, and we can easily deduce that the meaning of a con�guration is the

limit of the meaning of its �nite approximations:

[[�]] =

G

f[[�

(n)

]] j n � 1g:

By full abstractness of the model we mean as usual

[[�]] � [[�]] , �

<

�

M

�

for all con�gurations �; �.

The proof follows very much the same lines as the corresponding one for

the applicative case in [HI 89]. In the following we will outline the proof of

full abstractness in [HI 89] and show how our new theory can be �tted into this

existing proof which thus can be more or less reused. Recall that the denotational

model is the same and that the con�gurations in the new settings play the role

of processes in the previous one.

In [HI 89] we de�ned a transition relation and a divergence predicate in AT

v

,

and from that deduced an alternative characterization for the preorder �, called

�

M

. As we use the same model we can use the same de�nition. Thus we de�ne

the transition relation by

(A; f)

c�v

�! T if � 2 f!; ?g; c� 2

[

A and f(c�)(v) = T



Communicating Processes with Value-passing and Assignments 29

The divergence predicate, ", is de�ned by letting ? " and extending it in the

usual way for s 2 Act

�

. # s denotes the the negation of " s. The acceptance set

of a tree after s, A(T; s) is de�ned by:

i) A(?
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h(x := e);X;�i = hX;�[v=x]i where v = [[e]]�

hbe! X

1

; X

2

; �i =

�

hX

1

; �i if [[be]]� = true

hX

2

; �i if [[be]]� = false

hop(X); �i = op(hX;�i)

hc?x:t; �i = c?x:ht; �i

hc!e:t; �i = c!v:ht; �i where v = [[e]]�

Fig. 8. Equations for Basic Con�gurations

Lemma 3.3.1. For all � 2 BCon there exists at most one � such that � �! �.

For this �, . 2
�



Communicating Processes with Value-passing and Assignments 31

I � v �

� v �; � v 


� v 


II

�

i

v �

i

op(�) v op(�)

for every op 2

P

III

� v �

c!e:� v c!e:�

�[v=x] v �[v=x] for every v 2 V

c?x:� v c?x:�

IV

� v �

�� v �� � v �

for every equation � v �

V

[[e]] = [[e

0

]]

c!e:� = c!e

0

:�

VI

c?x:� = c?y:�[y=x]

if y does not occur free in �

Fig. 9. Proof System

Corollary 3.3.1. For all �nite �

� " , � =

A


:

Proof. By theorem 3.3.2 we may assume, that � is in wSF . The result follows im-

mediately from the structure of the weak sum forms and the strictness equations

in Figure 2.

Finally we introduce head normal forms for con�gurations. The de�nition is

basically the same as the one given in [HI 89].

De�nition 3.3.3. (Head Normal Forms) HNF is the least set which satis�es

1. STOP 2 HNF

2. Let A 2 sat(EV ) and f a partial function, which associates with every e 2

S

A of the form c! a �nite nonempty set, f(c), of pairs of values and basic

con�gurations. Then any con�guration of the form

X

� f

X

f�

e;f

je 2 AgjA 2 Ag

is in HNF , where

a) if e is c? then �

e;f

is a con�guration of the form c?x:ht; �i.
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b) if e is c! then �

e;f

is the con�guration

X

fc!v:�

v

j(v; �

v

) 2 f(c)g

We have the following normalization theorem for convergent con�gurations:

Theorem 3.3.3. (Normalization) If � # then � =

A

h(�) for some h(�) 2

HNF .

Proof. Similar to the proof for Proposition 4.2.1 in [HI 89].

For the sake of completeness we state the above mentioned properties as a propo-

sition:

Proposition 3.3.1. For all � 2 Con and s 2 Act

�

i)[[�]] # s if and only if � # s

ii) if � # s then A([[�]]
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4. Conclusion

In this paper we have represented a semantic theory for a process algebra which

supports value-passing and is equipped with the imperative assignment con-

struct. This is an direct extension of [HI 89], which handles an applicative version

of the language, i.e. the same language but without assignment and stores.

As in the mentioned paper, the theory is approached from three di�erent

angles. Thus we de�ne a denotational model for the language as a version of the

model Acceptance Trees([He 88],[HI 89]). Further we give an axiomatization of

the model and �nally we de�ne an operational behaviour in terms of testing. We

show the equivalence of all three approaches.

Following the standard approach the semantic interpretation is given with

respect to a store whereby we mean a total function which keeps track of the
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[fin

AT

(c; �v:F (t; g(c?)(v)) j c? 2 Bg

[fout

AT

(c; v; F (f(c!)(v); u) j c! 2 A;

v 2 domain(f(c!))g

[fout

AT

(c; v; F (t; g(c!)(v)) j c! 2 B;

v 2 domain(g(c!))g
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