
Concurrent Testing of Processes

�

M. Hennessy

University of Sussex

July 1, 1992

Abstract

We develop a noninterleaving semantic theory of processes based on testing.

We assume that all actions have a non-zero duration and the allowed tests take

advantage of this assumption. The result is a semantic theory in which concurrency

is di�erentiated from nondeterminism.

We show that the semantic preorder based on these tests is preserved by so-called

\stable" action re�nements and may be characterised as the largest such preorder

contained in the standard testing preorder.

�

This work has been supported by the ESPRIT/BRA CEDISYS project and the SERC

1

1 Introduction

In recent years there has been much research into semantic theories of processes which

distinguish nondeterminism from concurrency. See for example [DD89, DNM90, vGV87],

[BC89]. Most of these are based on some variation of bisimulation equivalence, [Mil89].

This is a well-established behavioural equivalence between processes based on their abil-

ity to perform actions. Roughly speaking two processes p; q are bisimulation equivalent

if whenever either can perform an action and be transformed into the process r then

the other can also perform the same action and be transformed into some r

0

which is

bisimulation equivalent to r. This equivalence leads to a so-called \interleaving" theory

of concurrency in that it reduces parallelism to nondeterminism. For example the pro-

cess which can perform the actions a and b in parallel is deemed to be equivalent to the

purely sequential but nondeterministic process which either can perform a followed by

b or b followed by a. However \non-interleaving" theories of concurrency, i.e. theories

which distinguish parallelism from concurrency, can be obtained by varying the basic

ingredients of the de�nition of bisimulation. For example the basic actions may be re-

placed by partial orders of actions where the order is induced by some idea of causality

as in [DNM90] or the structure of processes may be taken into account as in [BCHK91].

Another well-established \interleaving" theory of processes is based on testing,

[DH84]. Here processes are said to be equivalent if they are guaranteed to pass ex-

actly the same tests. Although the framework of testing equivalence is quite general,

apart from [MP91] it has only been applied, at least as far as the author is aware, to gen-

erate \interleaving theories". The purpose of this paper is use this framework to develop

a \non-interleaving theory" of processes and in particular to investigate the application

of this theory to action re�nement.

In the standard theory a test, which is usually itself a process, is applied to a process

by running both together in parallel. A particular run is considered to be successful

if the test reaches a certain designated successful state and the process guarantees the

test if every run is successful. The test and the process under observation interact by

communicating with each other or synchronising. In most process algebras synchroni-

sation is modelled as the simultaneous occurrence of complementary actions although

there is a variety of de�nitions of complementation. But regardless of the precise de�ni-

tion the actions which comprise the synchronisations are considered to be instantaneous

and indivisible. This of course is an idealisation and abstraction from reality but it has

proved to be most useful as it has lead to a range of elegant mathematical theories of

processes. Here we relax this restriction. Now we will assume that the synchronisations

take a non-zero but inde�nite amount of time. This is still an abstraction from reality as

we are not saying exactly what form the interaction takes; only that it takes time. For

example we could have in mind the rendez-vous mechanism of ADA or the existence of

some non-trivial communication medium connecting the tester and the process. Under

these assumptions we can see how the process performing a and b in parallel can be

di�erentiated from its sequential counterpart which performs the actions in either order.

Consider the test which requests a synchronisation via the action a and then will succeed

only if it can successfully initiate a second synchronisation via the action b before the

�rst synchronisation has terminated. The �rst process will always pass this test whereas

the second will always fail.

Let us now discuss how this intuitive idea of non-instantaneous actions can be for-

2

We now give a more detailed account of the contents of each section of the paper.

In the next section we de�ne the language used in the paper and give the st-operational

semantics. The language is a very

straightforward as p� can diverge although p and �(a), for every a

The existing work which appears closest to our results is reported in [Vog91a] and

[JM92]. In [Vog91a] the author deals with safe Petri Nets and failure equivalence. A

restricted form of re�nement theorem is proved for a generalisation of failure equivalence

based on interval semi-words and there is a characterisation with respect to the standard

failures equivalence. As the author points out in a separate paper, [Vog91b], interval

semi-words are more or less equivalent to st-sequences; it therefore follows (from the

results of section three) that this equivalence is closely related to

�

c

. However the notion

of action re�nement used is more restrictive than what we allow. In particular when a

re�nement � is applied to a process there can be no interaction between occurrences of

�(a) and �(b) in the re�ned process. In [JM92] this work is extended to a more general

class of Petri Nets but the restrictions on the type of action re�nements remain.

2 The Language

In this section we describe the language, taken from [AH92], its st-operational semantics

and the testing preorder.

The language is parameterised on a set of actions Act which is ranged over by a; b; : : :.

We assume that there is a possibly partial complementation function de�ned over Act;

we write the complement of a, if it exists, as a and we asssume that a is a. We also

assume a special action symbol, � , di�erent from all symbols in Act and a set of recursion

variables X ranged over by x.

those for sub-actions. Let L be an in�nite set of labels, ranged over by l, LSAct denote

the set of labelled sub-actions f s(a

l

); f(a

l

) j a 2 Act; l 2 L g and LAct denote the union

of all the external actions, LSAct [Act. For any set S we use S

�

to denote S [f�g. So

for example LSAct

�

; Act

�

, denote the sets LSAct [f�g;Act[f�g respectively. We let �

range over the set of all possible actions LAct

�

, � over the set of external actions LAct,

a over the set of complete actions Act and �nally e over LSAct, the set of (labelled)

sub-actions. The execution of the sub-actions will often lead to states of processes where

actions have started and not yet terminated and therefore we have to enrich the language

in order to de�ne such states. We call the more general terms con�gurations and they

are de�ned by

c ::= p j a

l

j c j c j c; p j cna

where we assume that in cna c contains no occurrences of any a

l

; a

l

and more importantly

that every occurrence of a labelled action a

l

is unique. An occurrence of a

l

is meant to

denote that there is an a action active and since we use the labels to distinguish di�erent

occurrences it is important that there is no duplication of labels. So for example the

con�guration a

l

; p j b

l

; q j a

k

; r describes a process which has three subprocesses, two

of which are performing an a action and one a b action. We let C denote the set of

con�gurations, ranged over by c, and for any c 2 C L(c) denotes f a

k

j a

k

occurs in c g.

De�nition 2.1 Let

p

be the least relation over con�gurations which satis�es

1. nil

p

2. p

p

; q

p

implies p + q

p

3. p

p

; c

p

implies p; c

p

4. c

p

; c

0

p

implies c j c

0

p

5. c

p

implies cna

p

6. t[rec x: t=t]

p

implies rec x: t

p

2

Since BP is contained in C this also gives a de�nition of

p

for the set of processes.

Because of the way in which recursion is handled we also need, in the de�nition of

testing, a

(O1) �

�

�! nil

a

s(a

l

)

�! a

l

for every label l

a

l

f(a

l

)

�! nil

(O2) p

�

�! c implies p+ q

�

�! c

(O3) c

1

�

�! c

0

1

implies c

1

j c

2

�

�! c

0

1

j c

2

provided c

0

1

j c

2

is in C

(O4) c

�

�! c

0

implies cna

�

�! c

0

na

provided a admits �

(O5) c

�

�! c

0

c; p

�

�! c

0

; p

c

p

; p

�

�! c

0

implies c; p

�

�! c

0

(O6) c

1

a

�! c

0

1

; c

2

a

�! c

0

2

implies c

1

j c

2

�

�! c

0

1

j c

0

2

(O8) t[rec x: t=x]

�

�! q implies rec x: t

�

�! q

(O9)

�

�!

Figure 1: Operational semantics

5. c # implies cna #

6. t[rec x: t=t] # implies rec x: t #

2

We often use " for the converse to #. So for example
 " and rec x: a+ x ". The next

state relations

�

�!, for each � 2 LAct

impli
(j)Tj
/R186 ar Td
[(con)999.654gi2 14.6402 Td
(state)Tjs7q9
/R186 0.24 Tf
27.3602 0 Td
(� 45100.64(4(ec)-8)Tj
/5 0.02(ct)]TJ
ationalj
/3
(c)Tjct)]TJ
1.52 15977 Td
 0.24 TMan14.4 0 Tdy
(� 45
/R3560.4 0 Td
Tj
/5 086 0.24 Tf
.0402 0 000.26(tics)(rul29(x:)2 TTd
(a)Tj
/)Tjs7q9
fteR186Td
(a)Tj
/Rstraigh14.4 085(tf
2w7.360262)Tj199 0 8)4000.6(ec)-8000.29(26 0.24 Tdo52 1597000.6(ec)-8notions11.99.654(ec)-requijs7q9
4 0 Td
(The)T
/R2mmeTf
14.8801 .eman)180ato
2
So

The last three rules are concerned with the derivation of internal moves and (O6) is the

most important. It says that an internal move may occur because of a communication

between two subprocesses. The remaining rules are straightforward;
 can only perform

internal moves and the moves of a recursive de�nition are determined by its body.

One can check that if c

�

�! c

0

and c 2 C then c

0

is also in C. One can also show that

the actual identity of the labels generated in the derivations are relatively unimportant.

Speci�cally if c

s(a

l

)

�! c

0

then for almost all labels k c

s(a

k

)

�! c

0

[k=l]; one can use any k

which does not occur already in c, which is a �nite set of labels. As stated previously

it is unnecessary to de�ne the operational semantics of complete actions as they can be

derived. This can be seen from the second part of the following lemma.

Lemma 2.3 for every con�guration c

1. c

s(a

l

)

�! c

0

f(a

l

)

�! d implies c

a

�! d

2. c

a

�! d implies there exists a con�guration c

0

such that for some l c

s(a

l

)

�! c

0

f(a

l

)

�! d

3. c

s(a

i

)

�!

s(a

j

)

�!

f(a

i

)

�!

f(a

j

)

�! d implies c

�

�! d.

2

Of slightly more interest is the fact that many pairs of moves can be permuted.

De�nition 2.4 Two elements, �; �

0

of LSAct

�

weakly commutes if for every pair of

con�gurations c; c

0

9d:c

�

�! d; d

�

0

�! c

0

implies 9d:c

�

0

�! d; d

�

�! c

0

. 2

The set of weakly commuting moves can be characterised as follows:

Proposition 2.5 A pair of moves < �; �

0

> is weakly commuting if and only if they are

of one of the forms the forms

1. < s(a

i

); � > where � is di�erent than f(a

i

)

2. < �; f(a

i

) > where � is di�erent than s(a

i

).

Proof: For pairs not of this form it is easy to think of counterexamples. If the pair

< �; �

0

> is of this form and c

�

�! d

�

0

�! c

0

then one can show by induction on the

derivation of c

�

�! d that there exists a d

0

such that c

�

0

�! d

0

�

�! c

0

The detailed case

analysis depends crucially on the allowed structure of con�gurations. 2

A stronger notion of commuting may be obtained by replacing the implication in the

above de�nition with \if and only if". Let us say that such a pair is strongly com-

muting". There are far fewer strongly commuting pairs; the only ones are of the form

< s(a

l

); s(b

k

) > and < f(a

l

); f(b

k

) >.

The reason for developing this st-operational semantics is to formalise the concur-

rent testing discussed in the introduction. However in order to be able to describe the

appropriate tests we need a language which is strictly more expressive than BP

Act

. This

is because in this form of testing we need to be able to test the ability of processes

to initiate new synchronisations before other previously initiated synchronisations have

9

terminated. Such tests are not possible in the basic language BP

Act

. So we include in

our set of tests processes which can perform as fully-
edged actions the subactions of

the language BP

Act

. Speci�cally we use as the set of actions

� = f s(a

l

); s(a

l

); f(a

l

); f(a

l

) j a 2 Act g [Act:

There is another problem which can not be resolved by mimicing the framework of

testing developed in [Hen88]. Here we have two forms of termination, in nil and � and it is

di�cult to see how they can be di�erentiated by purely computation means. Accordingly

we introduce into the testing language the ability to recognise proper termination; this

takes the form of a special action term which the test can execute only when the process

under observation is properly terminated. So we use as the set of tests, Tests, closed

terms in the language BP

�

where � is the set of actions

� [fterm; !g:

Here the action ! will be used to report the successful completion of an experiment.

Of course there are many tests in this language which will not be used but, at least here,

it is not of great importance to characterise the collection of meaningful tests.

We now de�ne formally how tests and processes, or more generally con�gurations,

interact. An experimental state takes the form e k c where e is a test and c a con�gura-

tion. An experiment proceeds by moving from state to state and this is de�ned using a

transition relation of the form e k c 7! e

0

k c

0

.

De�nition 2.6 Let 7!

Example 2.8 The processes a j b and a; b+ b; a are also incomparable: a j b guarantees

the test s(

1. c

"

=) c

2. c

s

=) d; d

�

�! d

0

implies c

s:�

=) d

0

for every � in LAct

�

3. c

s

=) d; d

�

�! d

0

implies c

s

=) d

0

.

Note the subtlety in this de�nition; c

�

n

=) d means that c can move to d by performing

at least n internal moves. For any c let S(c) = f a 2 Act j c

a

=) g; S(c) only contains

complete actions which are by de�nition unlabelled.

We say c is stable if c # and c

�

�! c

0

for no c

0

and it is live if c

p

is not true. i.e. if it has

not properly terminated. We also say it converges, written c +, if intuitively it can not

diverge, i.e. every sequence of the form

c = c

0

�

�! c

1

�

�! c

2

: : :

is �nite and for every con�guration c

k

in such a sequence c

k

#. The set of acceptance

sets of p after s, for s 2 LAct

�

, is de�ned by

A(p; s) = fS(c) j p

s

=) c; c stable and live g:

In this de�nition the requirement that c be live is crucial. Acceptance sets are compared

as in [Hen88], using a slight variation on

from e k p to e

nk

Proof: (Outline) The proof relies on the fact that if s 2 LAct

�

p

s

=) p

1

then the starts

and �nishes in s are in the proper order and p

s

=) p

1

if and only if p

s

0

=) p

0

1

where

s

0

2 LAct

�

is obtained from s by some systematic renaming to the duplicate labels in

the resulting sequence to ensure uniqueness and p

0

1

It follows more or less immediately that

Proposition 3.13 For all processes p; q p�

st

q if and only if p�

00

st

q. 2

One could go even further and show how these equivalence classes can be interpreted

as

De�nition 4.1 For each action re�nement � and term t let sub(�; t) be the term de�ned

by

1. sub(�; a) = �(a)

2. sub(�; (tna)) = sub(�[a 7! a

0

]; t)na

0

where a

0

is di�erent than all action names in

FA(�(a)) for each a occurring free in t.

3. sub(�; op(: : : ; t; : : :)) = op(: : : ; sub(�; t); : : :)

4. sub(�; x) = x

5. sub(�; rec x: t) = rec x: sub(�; t).

2

For each process p and action re�nement � sub(�; p) is also a process and we take the

behaviour of p� to be that of sub(�; p). Via this reduction we may view p� as a process

in BP and in what follows we will take this for granted.

We wish to investigate under circumstances the new semantic preorder is preserved

by action re�nement. Speci�cally let �

<

�

c

c

� if �(a)

<

�

c

c

�(a) for every a. Then we wish

to know under what circumstances

p

<

�

c

c

q and �

<

�

c

c

� imply p�

<

�

c

c

q�;

or speaking more strictly p

<

�

c

c

q and �

<

�

c

c

� imply sub(�; p)

<

�

c

c

sub(�; q).

In [AH91a] a similar problem was posed for bisimulation equivalence and it was shown

to be true for standard re�nements.

De�nition 4.2 An action re�nement � is standard if it satis�es

1. for each a �(a) j �(a)

"

=) r for some r such that r

p

.

2. for each a not �(a)

p

.

2

The �rst condition says that after the re�nement the resulting process should be able to

mimic the complete synchronisation between a and a and the second says that an action

can not be re�ned to a process which is properly terminated. These conditions are also

necessary if we wish

<

�

c

to be preserved by re�nements.

Example 4.3 Let p be (a + d) j d; b and q be p + � ; b. Then p

�

c

c

q but if �(d) =

c; �(d) = e then p� 6

�

c

q�; the former guarantees the test a;!. Note that this re�nement

does not satisfy the �rst requirement of standard. 2

Example 4.4 Let p; q be ((c + a; d) j d; b)nd; c + a; b respectively. Then p

�

c

c

q but if

�(a) = nil, a re�nement which does not satisfy the second condition, then p� 6

�

c

q�. 2

However more restrictions are neccessary as can be seen from the next example.

18

Example 4.5 Let p be a j (b; c) + a + b, q be a + b and � a standard re�nement such

that �(a) = d and �(b) = d. Then p

<

�

c

q but p guarantees the test c! whereas q fails

it. 2

Example 4.6 An standard action re�nemant is called stable if

1. �(a) 6

�

�!for every action a

2. if �(a) j �(b)

�

�! implies a = b

2

The example just discussed violates the second condition but we conjecture that the �rst

is unnecessary.

Theorem 4.7 (The Re�nement Theorem) For every pair of stable re�nements

�; �; p

<

�

c

c

q and �

<

�

c

c

� imply p�

<

�

c

c

q�.

Before beginning the proof of this theorem we should point out that it depends on the

syntax of the language used. In particular it does not hold for the language EPL, [Hen88],

with respect to which much of the previous work on testing has been developed. The

following example has been pointed out by L. Jategoankar, [Jat92]. The main di�erence

between EPL and CCS is that � is replaced by a binary \internal choice operator" �

with the operational semantics determined by the rules

p � q

�

�! p and p � q

�

�! q:

The relation

�

�! is much the same as

�

�! except that it does not decide the choice in

p + q. Speci�cally it satis�es

p

�

�! p

0

implies p + q

�

�! p

0

+ q

and the obvious symmetric couterpart.

Using this di�erent operational semantics on can check that a j b + a; b + b; a

<

�

c

a j b

but if we apply the action re�nement � which is the identity except that it maps b to a

then they can be distingushed by the test a;!.

The remainder of this section is devoted to proving this theorem. Most of intermedi-

ate results only depend on re�nements being standard; the extra conditions are needed

is one place, the proof of Theorem 4.22. So we only assume that all re�nements are

standard and we will explicitly mention stability when it is required.

We use the characterisation theorem of the previous section and therefore much of

the proof is concerned with �

st

instead of

<

�

c

. The proof depends on the ability to

break down a sequence of moves from p� into the contributions made by p and each �(a)

and conversely the ability to recombine appropriate sequences of moves from p and each

�(a) in order to obtain a Td
(a)Tj
/R123 It5rerned2 Td
(with)a.-999.349f
21pnsTd
())T()]TJl99 0 Td
[(i.7(recom)1000.26(bine)-120sed.)]T(in)-13000.7(order)-140-221theorem.

De�nition 4.8 An (extended) action re�nement is a mapping

�:Act [f a

i

j a 2 Act g 7�! C

such that �(a) 2 BP for all a 2 Act. 2

We say that a pair of such re�nements are compatible if they agree on all the unlabelled

actions, i. e. for all a 2 Act; �(a) = �

0

(a). A pair (c; �) is compatible if sub(�; c), de�ned

in the same way as above for terms, is a con�guration. This simply means that the

labels used in �(a

i

); �(b

j

) where a

i

; b

j

occur in c must be distinct. We will assume that

whenever we write c� in the pair is actually compatible. We will also say the pair is

proper if it is compatible and �(a

i

)

p

if and only if a

i

62 L(c). We will identify an action

re�nement � with its automatic extension, de�ned by letting �(a

i

) = nil for each a

i

. For

extended action re�nements obtained in this way every pair (p; �) is proper and we tend

to refer to \extended action re�nements" simply as \action re�nements".

Because substitution in general changes the names of restricted channels it is con-

venient to work modulo =

�

or even a slightly more general relation which includes =

�

.

Let � denote strong bisimulation de�ned over con�gurations using labelled sub-actions.

Speci�cally it is the largest equivalence relation over C such if c � d then

1. c

p

implies c

p

2. for all � 2 LAct

�

c

�

�! c

0

implies there exists a d

0

such that d

�

�! d

0

where c

0

� d

0

.

This is quite a strong relation as even the

Proposition 4.12 (The Whither theorem) Let c be a con�guration and � a re�nement.

Then

� starting moves

1. c

s(a

i

)

�! c

0

; �(a)

�

=) x implies c�

�

=) c

0

�[a

i

7! x]

2. if a

i

6= b

j

then c

s(a

i

)

�!

s(b

j

)

�! c

0

; �(a

i

)

a

0

=) x; �(b

j

)

a

0

=) y implies c�

�

=) c

0

�[a

i

7!

x; b

j

7! y]

3. if b

j

occurs in c then c

s(a

i

)

�! c

0

; �(a)

a

0

=) x; �(b

j

)

a

0

=) y implies c�

�

=) c

0

�[a

i

7!

x; b

j

7! y]

� continuing moves

4. if a

j

occurs in c then �(a

j

)

�

=) x implies c�

�

=) c�[a

i

7! x]

5. If a

i

; b

j

occur in c and a

i

6= b

j

then �(a

i

)

a

0

=) x; �(b

i

)

a

0

=) y imply c�

�

=)

c�[a

i

7! x; b

j

7! y]

� only c moving

6. c

�

�! c

0

implies c�

�

=) c

0

�.

Proof: The �rst two statements are proved directly by induction on the length of the

proof of c

s(a

i

)

�! c

0

; however the �rst is needed to prove the second. The fourth statement

is proved by structural induction on c and note that in this case c can not be of the

form rec x: t. Statements (3) and (5) are also proved by structural induction on c and

(1) and (4) are needed in the proof of (3) while only (4) is used in that of (5).

Since �

st

is de�ned in terms of sequences the Whence and Whither theorems must

be generalised to sequences. This is not particularly easy but it helps somewhat if we

con�ne our interest to st-sequences. The idea is to de�ne a predicate which relates tuples

of sequences of contributions from the action re�nement � and the underlying process

p to the sequence produced by the re�ned process p�. However in the production of a

sequence of moves from p�

2

One can prove various properties of M

T

by induction on its de�nition. For example

if < u; r; s >2 M

T

then a

i

is in the domain of r if and only if s(a

i

) appears in u.

Also if < u; r; s >2 M

T

then (a; s

0

) 2 T if and only if there is some f(a

i

) in u such

that r(a

i

) = s

0

. The main property of M

T

is that it can record the manner in which

derivations are made from processes of the form p�. The next two theorems state that

p� can perform a sequence s from LAct

�

essentially if and only if < u; r; s >2 M

T

for

some T � T (�) where u and r record the contributions of p and � to the computation

of s. The many extra conditions in both theorems are required in order to carry out the

proofs using induction.

Theorem 4.15 (The Decomposition Theorem)

If (p; �) is proper and p�

s

=) c then there exists a con�guration c, a re�nement �

0

and a

tuple < u; r; s >2 M

T

such that

1. c � c�

0

2. p

u

=) c

3. �(a)

r(a

i

)

=) �

0

(a

i

) for every a

i

2 L(c)

4. T � T (�)

5. (c; �

0

) is proper and � and �

0

are compatible.

Proof: The proof is by induction on

crecordsequene

of M

T

, to ensure that the pair (c; �

0

) is proper.

As an example suppose that clause (1) of the Whence theorem applies, d

s(a

i

)

�!

d

00

; �

1

(a)

�

�! x and c � d

00

�

1

[a

�(a)

p

r(a

i

). So let �

r

Unfortunately this is not the only result we need about divergence. This is because

c� may diverge although c and �(a), for every a, are well behaved processes which

never diverge. As a simple example let c be rec x: a;x j rec x: b;x with � the standard

re�nement de�ned by �(a) = a+ a

0

; �(b) = b+ a

0

. Note that � is not stable. There are

similar forms of divergence for stable re�nements although the behaviour is not quite

as complicated. For example let c be a j b and � the stable re�nement de�ned[-(y)]TJ
/R186 0.24 Tf
1Td

Proof:

Proof: We use the alternative characterisation of

<

�

c

c

, expressed in terms of st-

sequences and stability. In view of Proposition 4.13 it is su�cient to show p� �

st

q�.

This will follow from p�

st

q and �

<

�

c

c

�.

Now for any st-sequence s suppose p� + s. We have to prove three statements:

1. q� + s.

We prove the contrapositive: assuming q� * s we prove p� * s. If q� * s then for

some pre�x s

0

of s q�

s

0

=) c such that c *. To avoid unnecessary complexity we

just assume that s

0

is s.

To any derivation q�

s

=) c we can apply the Decomposition theorem to obtain

< u; r; s >2 M

T

for some T � T (�) such that

(a) c � c

0

�

0

(b) T � T (�)

(c) q

u

=) c

0

(d) for every a

i

2 L(c

0

) �(a)

r(a

i

)

=) �

0

(a

i

).

In order to prove p� * s we will try to apply Proposition 4.17 and in most cases we

will be successful. Note that becasue �

<

�

c

� we can always assume that for such

a decomposition T � T (�). There are three possibilities:

� There exist some c such that q�

s

=) c and the above decomposition gives a

c

0

such that c

0

*.

In this case since p

<

�

c

q it follows that p * u. From �

<

�

c

� it then follows

that all the requirements of Proposition 4.17 hold and we can conclude p� *.

� There exist some c such that q�

s

=) c and the above decomposition gives

either some a

i

2 L(c

0

) such that �

0

(a

i

) * or some a 2 S(c

0

) such that �(a) *.

Again one can show that all the requirements of Proposition 4.17 are satis�ed.

� Otherwise we can assume that in the decomposition above that (d; �

0

) +.

Here we use the predicate N

T

. By its decomposition theorem we obtain for

each n � 0, < u

1

; r

1

; n >2 N

T

1

for some T

1

� T (�) such that

c

0

u

1

=) c

n

�

0

(a

i

)

r

1

(a

i

)

=) for each a

i

2 L(c

0

) \ L(c

n

) \ domain(r

1

)

�

0

(a)

r

1

(a

i

)

=) for each a

i

2 L(c

n

)� L(c

0

):

Let u

0

; T

0

; r

0

denote u:u

1

; T [T

1

and r � r

1

respectively.

Then since p

<

�

c

q and �

<

�

c

� it follows that conditions i) and ii) of Proposi-

tion 4.17 are true. If for some n condition iii) is also true then, since one can

show (using the de�nitions of M

T

and N

T

) that < u

0

; r

0

; s >2 M

T

, we can

apply this proposition to obtain p� * s.

So we may assume �(a) + r

0

(a

i

) for each a

i

2 L(c

n

) and since (a; s

0

) 2 T

0

implies s

0

= r

0

(a

j

) for some j it follows that T

0

� T (�). So we may apply

the Composition theorem for M

T

followed by that for N

T

to obtain p�

s�

n

=) .

Since this is true for each n it follows that p� * s.

2. If q

p

s then p

p

s.

We leave this to the reader.

30

3. If A 2 A(q�; s) then B � A for some B 2 A(p�; s).

If A 2 A(q�; s) then q�

s

=) c for some live and stable c such that A = S(c).

Applying the decomposition theorem to this derivation we obtain < u; r; s >2 M

T

for some T � T (�) and c � d�

0

, where (d; �

0

) is proper, such that q

u

=) d and

�(a)

r(a

i

)

=) �

0

(a

i

) for every a

i

2 L(d). In view of Proposition 4.17 and the fact

that p� + s we may assume that p + u and �(a) + r(a

i

), �(a) + for each a 2 S(d)

and T � T (�).

Since d�

0

is stable it follows that d; �

0

(a

i

); �

0

(a) are all stable, for each a

i

2 L(d)

and a 2 S(d). These are also live because d�

0

is live and (d; �

0

) is proper.

So from p

<

�

c

c

q and �

<

�

c

� we can obtain stable and live c and x

a

i

such that p

u

=)

c; �(a)

r(a

i

)

=) x

a

i

and S(c) � S(d); S(x

a

i

) � S(�

0

(a

i

)). Applying the Composition

theorem for M

T

we obtain p�

s

=) c�

1

where �

1

denotes �[a

i

7! x

a

i

].

We show that c�

1

is stable and for this we need the fact that the re�nements are

stable. Suppose c�

1

�

�! . We use the Whence theorem to derive a contradiction.

This theorem gives seven di�erent possible decompositions for this internal move

and examining each in turn we see that none of them are possible. The �rst is not

possible since � is stable. In the second decomposition the stability of � implies

that a = b and so by Lemma 2.3 c

�

�! which contradicts the fact that c is stable.

In the third case since S(c) � S(d) we can use the third clause of the Whither

theorem to show that d�

0

�

�! which contradicts the stability of d�

0

. A similar

arguement rules out the �fth case while the fourth is impossible because each x

a

i

is stable. The stabilty of c rules out the sixth case and �nally the last case is not

possible since each x

a

i

is live.

One can also check that c�

1

is live and by construction S(c�

1

) � A. The result

now follows since p�

s

=) c�

1

.

2

5 Characterising ST-Testing

The more standard notion of testing, based on complete, non-divisible actions as in

[Hen88] may also be applied to our language; we denote the resulting preorder by

<

�

s

.

Because only complete actions are used this equivalence does not distinguish between

nondeterminism and concurrency. It is also not preserved by action re�nement.

In this section we examine the relationship between

<

�

c

and

<

�

s

. The main result is

that

<

�

c

c

may be characterised by

<

�

s

c

and action re�nement. Speci�cally

<

�

c

c

satis�es

the properties

1. it is contained in

<

�

s

c

2. it is preserved by stable action re�nements.

We prove that

<

�

c

c

is the largest relation with these two properties.

31

Let us �rst de�ne the testing relation

<

�

s

. Although it may be obtained by restrict-

ing the tests in section 2 it makes the development clearer if we reiterate the various

de�nitions. For each � 2 Act

�

let

�

�!

s

be the least relation over BP which satis�es

all of the requirements (O1) to (O7) in Figure 1 with the single change that in (O1)

the second and �

Corollary 5.4 For all processes p; q p

<

�

c

q implies p

<

�

s

q. 2

Let

<

�

s

c

be de�ned in the obvious way from

<

�

s

: p

<

�

s

c

q if p

<

�

s

q and

p stable implies q stable. It follows trivially that

<

�

c

c

�

<

�

s

c

. We also know

that

<

�

c

c

is preserved by action re�nement and therefore the main result of this section

will follow if we can construct a particular stable re�nement � with the property that

for all processes p; q; p� � q� implies p�

st

q. We de�ne � as a mapping

�:Act 7�! BP

�

where � is the set of actions de�ned in section 3; it contains all the elements of Act and

all labelled begin and end actions together with their complements. Then � is de�ned

if

actually occur, clauses (2) and (6). In each case it is straightforward to �nd the required

c

0

and �

00

. 2

As an immediate corollary we have

Corollary 5.9 For every st-sequence s; p * s if and only if p� * s.

Proof: First suppose p * s. Without loss of generality we can assume p

s

=) c such

that c *. By Corollary 5.6 p�

s

=)

s

c�

c

and by the Whither theorem c * implies c�

c

*.

Conversely suppose p� * s, say p�

s

=)

s

c such that c *. Applying Lemma 5.7 c � c�

0

for some extension �

0

of � compatible with c and p

s

0

=) c for some s

0

� s. By the previous

lemma it follows that c *, i. e. p * s

0

and so p * s. 2

We also have the following properties of the re�nement �.

Lemma 5.10 For every extension �

0

of � compatible with c

1. c

p

if and only if c�

0

p

2. c is stable if and only if c�

0

is stable

3. if c is stable S(c) = S(c�

0

).

Proof: Straighforward using Proposition 4.10 and the Whither and Whence theorems.

2

Finally we can prove the crucial property of the re�nement �.

Theorem 5.11 p�

<

�

s

q� implies p

<

�

c

q.

Proof: Suppose q * s where s is an st-sequence. By the previous corollary q� * s.

This in turn implies p� * s from which p * s follows, again by the corollary.

We leave the reader to check q

p

s implies p

p

s and we check the condition on accep-

tance sets. Suppose A 2 A(q; s), i. e. q

s

=) c such that c is live and stable and A = S(c).

By Corollary 5.6 q�

s

=)

s

c�

c

and by the previous lemma c�

c

is also live and stable and

A = S(c�

c

). So p�

s

=)

s

c for some live and stable c such that S(c) � A. Applying

Lemma 5.7 c � c�

0

for some extension �

0

compatible with c and p

s

0

=) c for some s

0

such

that s � s

0

. Again by the previous lemma c is live and stable and S(c) = S(c�

0

) = S(c).

So S(c) 2 A(p; s

0

) = A(p; s). 2

As a corollary we have the main result of the section:

Corollary 5.12 The relation

<

�

c

c

is the largest preorder contained in

<

�

s

c

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[MP91] D. Murphy and D. Pitt. Testing, betting and true concurrency. In Proceedings

of Concur 91, number 527 in Lecture Notes in Computer Science, 1991.

[Sto88] A. Stoughton. Fully Abstract Models of Programming Languages. Research

Notes in Theoretical Computer Science, Pitman/Wiley, 1988.

[TV87] D. Taubner and W. Vogler. The step failures semantics. In F.J. Brandenburg

et. al., editor, Proceedings of STACS 87, number 247 in Lecture Notes in

Computer Science, pages 348{359. Springer{Verlag, 1987.

[vG90] R.J. van Glabbeek. The re�nement theorem for ST-bisimulation. In Prooceed-

ings IFIP Working Group, Sea of Galilee, Lecture Notes in Computer Science.

Springer{Verlag, 1990.

[vGV87] R.J. van Glabbeek and F.W. Vaandrager. Petri net models for algebraic

theories of concurrency. In J.W. de Bakker, A.J. Nijman, and P.C. Treleaven,

editors, Prooceedings PARLE conference, number 259 in Lecture Notes in

Computer Science, pages 224{242. Springer{Verlag, 1987.

[Vog90] W. Vogler. Bisimulation and action re�nement. Technical report, Technische

Universit�at M�unchen, 1990.

[Vog91a] W. Vogler. Failure semantics based on interval semiwords is a congruence for

re�nement. Distributed Computing, 4:139{162, 1991.

[Vog91b] W. Vogler. Is partial order semantics necessary for action re�nement ? Tech-

nical report, Technische Universit�at M�unchen, 1991.

37

