










� prefer designs with greater cohesion in the modules

� prefer designs with less coupling between modules

These guidelines do not however say anything at all about what to do when they



Turing machine. One can therefore think of the encoding as being a message that

is sent to some recipient (the decoder), whose task is then to decode the message.

Given that the message will consist of string of bits, it is necessary for the decoder

to be able to recognise which substrings of these bits represent which parts of the

message. Therefore all the apparatus of Information Theory[11], and in particular

the theory of optimal uniquely decodeable codes, can be brought to bear.

Given some data D, one is often faced with a choice of several competing the-

ories which can account for the data. An often used principle in making such deci-



will take. Only by understanding exactly what needs to be sent, and how often

various symbols are used in such a message can one understand the complexity

formula. We will begin by describing the high-level format of the encoding of a

HMD, and then discuss encoding this as a string of bits whose length will be taken

as the complexity of the HMD. It should also be noted that we will follow the usual



not turn up in the messages), “empty” denotes the empty string, and jentitySeqj

denotes the length of the following entitySeq (and similarly for jmoduleSeqj and

jconnectionSeqj). junconnectedj represents the number of unconnected basic enti-

ties (i.e. with no links) in a module. The meaning of jmodulesUpjwill be explained

in the next section where we give details of how links are described. It should be

noted that we have been very careful about the ordering of information in these

messages (links are described after details of which modules there are, and names

have been specified for modules and basic entities) to enable a recipient of the

message to decode them. By the time they get to link descriptions they will already

know all names (codes) for entities and modules. It should also be noted that if

a system has some isolated entities (entities with no connections to others), then

we do not need to name these, but can simply say how many there are. This is a

consequence of the fact that we are only trying to communicate the structure of the

system, and not any other information such as the arbitrary names a designer might







does not have prior knowledge of the relative frequencies of the various symbols

occurring in the message. So how often is each name used in the message. A little

thought will show that the names of a connected basic entity n will occur in the

message once for each incoming edge of n, and once to specify the name prior to

the edge descriptions, giving a total of:

f (n) = indegree(n)+1

Similarly, the name of each modulem will occur

f (m) = indegree(m)+1

times. Additionally, the first occurrence of each of these names (essentially telling

the recipient what name (code) is being used, so they can recognise it in the future,

has to be preceded by its length, so the recipient can tell when the name ends.

Information theory tells us that when transmitting a message containing sym-

bols si occurring with frequencies fi, then we need roughly

� log2

�

fi

f

�

bits (where f = ∑i fi) for the code for si, and that the message length will be min-

imised if we use codes of that length. Furthermore, information theory tells us that

such codes exist. Furthermore, because of our use of “route descriptions” to name

entities connected to a node, we need only guarantee unique names for the basic

entities and submodules within their containing module. Accordingly, we can take

the length of the code for a name to be:

� log2

�

f (n)

∑x f (x)

�

where x ranges over the named basic entities and sub-modules of the module n

is in. In other words, the code lengths for names are determined by the relative

frequencies of the names. The actual frequencies are determined globally, but the

relative frequencies are determined by using these global frequencies locallywithin

a module to compute the lengths of the local names.

3.6 The Complexity Formula

In the light of the above discussion the formula for the complexityψ(X) of a HMD
X is given by:

ψ(X) = ∑
m2M

0

B

@

l(jUmj+1)+ l(jCmj+1)+ l(jMmj+1)

+∑n2Cm[Mm

h

l
�

� log
�

fn
Fm

��

� fn log
�

fn
Fm

�i

+∑n2Cm
∑n0

2outNodes(n) l(relDepth(n; lca(n;n0)))

1

C

AC



whereM is the set of all the modules in the HMD X , l represents the code lengths

for integers discussed earlier,Um is the set of unconnected basic entities in module

m, Cm



Another distinction often made in the GA literature is between the “classi-



uals in a neighbourhoodcan never be replaced until there is another fitter individual

in the neighbourhood.

4.1 Crossover

Defining a suitable crossover operation which produces a new HMD from two

“parent” HMDs is not entirely trivial. Given a fixed underlying system S we can

think of a HMD as simply being a tree structure over the nodes of S. We do not

need to take the links into consideration as they are the same for all HMDs over S

(of course we need to consider the links when computing the fitness of the HMD

their description lengths form the dominant part of ψ). Since each genome can
therefore be encoded by a tree structure, we have based our crossover operation on

the tree-based crossover operation used by Koza[5] in his Genetic Programming

work. However, using Koza’s original tree crossover is not guaranteed to give a

legal HMD of S, and we have to repair the result so that it is legal. This is easily

done using the concatenation operator described below.

4.1.1 Concatenating Two HMDs

Given two HMDs H1 and H2 for two underlying systems S1 and S2 one can define

a family of concatenation operators �M (one for each module M occurring in H1)

for “gluing together” the two HMDs to form a new HMD H1 �M H2 for the system

S = S



T1. Define S1 �M S2 (read the concatenation of S2 onto S1 at M) by the following

process:

1. Let T be a copy of T1, and T 0

2 a copy of



















sensors

ACAC

BD

BD

Figure 26: The traffic lights example

techniques. In this last example we will look at one (fairly small) example of a real

software design, published in [10]. The requirement is to control the flow of traffic

over a cross-roads, see Figure 26. The sensors provide information about waiting











[10] Robinson, P.J. (1992) HOOD: Hierarchical Object-Oriented Design.

Prentice-Hall Object-Oriented Series, Prentice Hall.

[11] Shannon, C.E. (1948) The mathematical theory of communications. Bell Sys-

tem Technical Journal 27:379–423, 623–656.

[12] Thornton, C.J. and du Boulay, B. (1992) Artificial Intelligence Through

Search. Intellect, Oxford, England.

[13] Weyuker, E.J. (1988) Evaluating software complexity measures. IEEE Trans-

actions on Software Engineering, SE-14(9), pp. 1357-65.

[14] Witten, I.H., Neal, R.M., and Clear, J.G. (1987). Arithmetic coding for data

compression. Communications of the ACM, 30(6):520–540.

[15] Wood, J.A. (1998) Improving Software Designs via the Minimum Descrip-

tion Length Principle. Ph.D. Thesis, University of Sussex.

30


