




2 Search spaces and neutrality

This section introduces two of the main concepts used in the paper. The fitness landscape
(section 2.1), first introduced by Wright (1932), describes the search space as a multi-dimensional
landscape defined by the genotype-to-fitness mapping through which evolution moves. The
classical idea of searching this landscape for good genotypes focuses on the difficulty of climbing
up to the globally optimal fitness solution, and avoiding locally optimal solutions. Here we
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through exhaustive mutation of genotypes at the start of the plateau that no transitions exist



robotic controller architectures. The search spaces defined by these two genetic systems show a
high degree of neutrality, and no differences are seen using standard measures of ruggedness and
modality (Smith et al., 2001a). Further details of the genotype-to-fitness mapping are given in
section 4.

Other biological research in evolvability is also of relevance to evolutionary computation, e.g.
the work on adaptation to change in environment through such mechanisms as alleles providing
increased mutation rates (Taddei et al., 1997; Sniegowski et al., 1997). However, in this paper
we focus on evolvability in terms of the properties of the solutions’ local search space. The
next section outlines the offspring transmission function, and defines a simple set of evolvability
metrics.

3.1 The transmission function

In this paper, we follow the definition of evolvability as the ability of individuals and populations
to produce fit variants, specifically the ability to both produce fitter variants, and to not produce
less fit variants. This definition is intimately tied in with research on the









applied evolutionary robotics genotype-fitness mapping used in the work presented here.









- Initialise population of 100 solutions on 10x10 grid.

- Evaluate each solution fitness.

- Repeat until success criterion met, or MaxGenerations reached:

- Repeat 100 times for 1 generation:

- Select solution at random.

- Create mating pool of solution plus 8 nearest grid neighbours.
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Figure 17: Median generations before given fitness level reached, for GasNet and NoGas conditions.

extremely deleterious mutations from the GasNet solutions, rather than an increased number of
intermediate mutations. By contrast, the probability of mutations which increase fitness, and
the overall expected fitness of mutations were extremely similar for the two search spaces (the
differences in the expected fitness of the worst mutations has only a relatively small impact on
the overall expected fitness).

Although the differences are small, the larger number of neutral mutations in the GasNet space,
especially at higher fitnesses, will result in a larger number and variety of good solutions in
the population at any one time. The probability of a deleterious mutation being subsequently
reversed is small2, thus at any one time, evolution in the GasNet space has a greater probability
of finding the good mutations: both the increased number of good solutions, and the increased
variety will aid evolution.

8 Discussion

The promise of artificial evolution lies in producing good solutions to difficult problems. How-
ever, if we are to apply such techniques to evolving solutions for problems with time consuming
fitness evaluation, we must develop suitably evolvable solution architectures. In recent work
we have developed the “GasNet”, and shown in a series of evolutionary robotics experiments
that a significant decrease in the numbers of evaluations is required to evolve successful GasNet
controllers (Husbands, 1998; Husbands et al., 1998; Smith and Philippides, 2000). In this paper
we have applied the concept of evolvability in order to analyse the search spaces underlying two
different genetic systems, the GasNet and NoGas robot control architectures.

We have shown how a set of evolvability metrics defined in terms of the transmission function, or
the distribution of solution offspring fitnesses, can predict the difficulty of finding good solutions
in a theoretical class of tunably rugged and neutral landscapes (Kauffman, 1993; Newman and
Engelhardt, 1998). In particular, we have shown that the metrics can predict the difficulty of
finding solutions of a given fitness, not possible with single measures of landscape “difficulty”
such as the correlation length.

2We can apply Muller’s ratchet argument: the probability of a low fitness solution being selected as a parent
is small, and the probability that the resulting offspring will have high fitness is also small.
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