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Abstract

We present novel parsing algorithms for several sets of mildly non-projective de-
pendency structures.

First, we de�ne a parser for well-nested structures of gap degree at most 1, with
the same complexity as the best existing parsers for constituency formalisms of
equivalent generative power. We then extend this algorithm to handle all well-nested
structures with gap degree bounded by any constant k.

Finally, we de�ne a parsing algorithm for a new class of structures with gap degree
up to k that includes some ill-nested structures. This set of structures, which we call
mildly ill-nested, includes all the gap degree k structures in a number of dependency
treebanks.

1 Introduction



of predicate argument structure. We take dependency structures to be directed trees,
where each node corresponds to a word and the root of the tree marks the syntactic head
of the sentence. For reasons of e�ciency, many practical implementations of dependency
parsing are restricted to projective structures, in which the subtree rooted at each word
covers a contiguous substring of the sentence. However, while free word order languages
such as Czech do not satisfy this constraint, parsing without the projectivity constraint
is computationally complex. Although it is possible to parse non-projective structures
in quadratic time under a model in which each dependency decision is independent of
all the others (McDonald et al., 2005), the problem is intractable in the absence of this
assumption (McDonald and Satta, 2007).

Nivre and Nillson (2005) observe that most non-projective dependency structures ap-
pearing in practice are \close" to being projective, since they contain only a small propor-
tion of non-projective arcs. This has led to the study of classes of dependency structures
that lie between projective and unrestricted non-projective structures (Kuhlmann and
Nivre, 2006; Havelka, 2007). Kuhlmann (2007) investigates several such classes, based
on well-nestedness and gap degree constraints (Bodirsky et al., 2005), relating them to
lexicalised constituency grammar formalisms. Speci�cally, he shows that: linear context-
free rewriting systems (LCFRS) with fan-out k (Vijay-Shanker et al., 1987; Satta, 1992)
induce the set of dependency structures with gap degree at most k− 1; coupled context-
free grammars in which the maximal rank of a nonterminal is k (Hotz and Pitsch, 1996)
induce the set of well-nested dependency structures with gap degree at most k − 1; and
LTAGs (Joshi and Schabes, 1997) induce the set of well-nested dependency structures
with gap degree at most 1.

These results establish that there must be polynomial-time dependency parsing al-
gorithms for well-nested structures with bounded gap degree, since such parsers exist
for their corresponding lexicalised constituency-based formalisms. However, since most
of the non-projective structures in treebanks are well-nested and have a small gap de-
gree (Kuhlmann and Nivre, 2006), developing e�cient dependency parsing strategies
for these sets of structures has considerable practical interest, since we would be able
to parse directly with dependencies in a data-driven manner, rather than indirectly
by constructing intermediate constituency grammars and extracting dependencies from
constituency parses.

We address this problem with the following contributions:

• We de�ne a parsing algorithm for well-nested dependency structures of gap degree
1, and prove its correctness. The parser runs in time O(n7), the same complexity
as the best existing algorithms for LTAG (Eisner and Satta, 2000), and can be
optimised to O(n6) in the non-lexicalised case.

• We generalise the previous algorithm to any well-nested dependency structure with
gap degree at most k in time O(n5+2k).

• We generalise the previous parsers to be able to analyse not only well-nested struc-
tures, but also ill-nested structures with gap degree at most k satisfying certain
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constraints1, in time O(n4+3k).

• We characterise the set of structures covered by this parser, which we call mildly
ill-nested structures, and show that it includes all the trees present in a number of
dependency treebanks.



well-nested is said to be ill-nested. Note that projective trees are always well-nested,
but well-nested trees are not always projective.

2.2 Dependency parsing schemata

The framework of parsing schemata (Sikkel, 1997) provides a uniform way to describe,
analyse and compare parsing algorithms. Parsing schemata were initially de�ned for
constituency-based grammatical formalisms, but G�omez-Rodr��guez et al. (2008) de�ne
a variant of the framework for dependency-based parsers. We use these dependency
parsing schemata to de�ne parsers and prove their correctness. We will now provide
brief outlines of the main concepts behind dependency parsing schemata.

The parsing schema approach considers parsing as deduction, generating intermediate
results called items



3 The WG1 parser

3.1 Parsing schema for WG1

We de�ne WG1, a parser for well-nested dependency structures of gap degree ≤ 1, as
follows:

The item set is IW G1 = I1 ∪ I2, with

I1 = {[i; j; h; �; �] | i; j; h ∈ N; 1 ≤ h ≤ n; 1 ≤ i ≤ j ≤ n; h 6= j; h 6= i− 1};

where each item of the form [i; j; h; �; �] represents the set of all well-nested partial
dependency trees3 with gap degree at most 1, rooted at wh, and such that bwhc =
{wh} ∪ [i; j], and

I2 = {[i; j; h; l; r] | i; j; h; l; r ∈ N; 1 ≤ h ≤ n; 1 ≤ i < l ≤ r < j ≤ n;
h 6= j; h 6= i− 1; h 6= l − 1; h 6= r}

where each item of the form [i; j; h; l; r] represents the set of all well-nested partial depen-
dency trees rooted at wh such that bwhc = {wh}∪([i; j]\ [l; r]), and all the nodes (except
possibly h) have gap degree at most 1. We call items of this form gapped items, and the in-
terval [l; r] the gap of the item. Note that the constraints h 6= j; h 6= i+1; h 6= l−1; h 6= r
are added to items to avoid redundancy in the item set. Since the result of the expres-
sion {wh} ∪ ([i; j] \ [l; r]) for a given head can be the same for di�erent sets of values
of i; j; l; r, we restrict these values so that we cannot get two di�erent items represent-
ing the same dependency structures. Items � violating these constraints always have
an alternative representation that does not violate them, that we can express with a
normalising function nm(

nm ([

�r 1



used for all the parsers, so we do not make it explicit for subsequent schemata. Note
that initial items are separate from the item set IW G1 and not subject to its constraints,
so they do not require normalisation.

The set of �nal items for strings of length n in WG1 is de�ned as the set

F = {[1; n; h; �; �] | h ∈ N; 1 ≤ h ≤ n};

which is the set of the items in IW G1 containing dependency trees for the complete input
string (from position 1 to n), with their head at any word wh.

Finally, the deduction steps of the WG1 parser are the following:

Link Ungapped :
[h1; h1; h1; �; �]
[i2; j2; h2; �; �]
[i2; j2; h1; �; �



of linking each of the dependent subtrees to the new head wh; (2) applying the various
Combine steps to join all of the items obtained in the previous step into a single item.
The Combine steps perform a union operation between subtrees. Therefore, the result





and by checking the steps one by one we can see that their constraints guarantee that
this union satis�es the condition. The gap degree of the head in Tc is guaranteed to
be at most 2 by this condition (1), and the gap degree of the rest of the nodes in Tc is
guaranteed to be ≤ 1 because their induced subtrees are the same as in the antecedent
tree Ta or Tb in which they appeared (note that, by construction of the antecedents of
Combiner steps, the only node that appears both in Ta and Tb is wh, so the rest of
the nodes in Tc can only come from one of the antecedent trees). Therefore, (2) also
holds. Regarding well-nestedness, we note that the subtree induced by the head of the
consequent tree cannot interleave with any other, and the rest of the subtrees are the
same as in the antecedent trees. Thus, since the subtrees in each antecedent tree did
not interleave among themselves (Ta and Tb are well-nested), the only way in which the
consequent tree could be ill-nested would be having a subtree of one antecedent tree
interleaving with a subtree of the other antecedent tree. This can be checked step by
step, and in every single Combiner step we can see that two subtrees coming from each
of the antecedent trees cannot interleave. As an example, in a Combine Closing Gap
step:

[i; j; h; l; r] [l; r; h; �; �]
[i; j; h; �; �]

In order for a subtree in the second antecedent to be able to interleave with a subtree
in the �rst antecedent, it would need to have nodes in the interval [l; r] and nodes in the
set [1; i− 1] ∪ [j + 1; n], but this is impossible by construction, since the projection of a
tree in the second antecedent is of the form {wh} ∪ [l; r].

Analogous reasoning can be applied for the rest of the Combiner steps, concluding
that all of them preserve well-nestedness. With this we have proven (ii), and therefore
the soundness of WG1.

3.2.2 Order annotations

In the completeness proof forWG1, we will use the concept of order annotations (Kuhlmann,
2007; Kuhlmann and M�ohl, 2007). Here we will outline the concept and some properties
relevant to the proof, a more detailed discussion can be found in (Kuhlmann, 2007).

Order annotations are strings that encode the precedence relation between the nodes
of a dependency tree: if we take a dependency tree with its words unordered and decorate
each node with an order annotation, we will obtain a particular ordering for the words.
Order annotations are related to projectivity, gap degree and well-nestedness: there
exists a set of order annotations that, when applied to nodes in any structure, will result
in an ordering of the nodes that satis�es projectivity, and the same can be said about
the properties of well-nestedness and having gap degree bounded by a constant k. In
addition to this, order annotations are closely related to the way in which the parsers
de�ned in this report construct subtrees with their Combine steps, and this will make
them useful for proving their correctness.

Let T be a dependency structure for a string w1 : : : wn, and wk a node in T . Let
wd1 : : : wdp be the direct dependents of wk in T , ordered by the position of the leftmost
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element in their projection, i.e. min{i ∈ N | wi ∈ bwduc} < min{j ∈ N | wj ∈ bwdvc} if
and only if u < v.

The order annotation for a node wk is a string over the alphabet {0; 1; : : : ; p} ∪ {\;"}
obtained from the following process:

• Build a string a(T;wk) = a1a2 : : : an, where ak = 0, ai = u if i ∈ bwduc, and
ai =\," (comma) otherwise (i.e. if i =∈ bwkc).

• The order annotation for wk, o(T;wk), is the string obtained by collapsing all
adjacent occurences of the same symbol in a(T;wk) into a single occurence, and
removing all leading and trailing commas.4

By construction, order annotations have the following property:

Property 1. If the order annotation for a node wk is a string o(T;wk) = o1 : : : oq, then
there exist unique natural numbers i1 < i2; : : : < iq+1 such that:

• If the symbol 0 appears in position v in o(T;wk), then iv = k and iv+1 = k + 1.

• If a symbol s ∈ (N \ {0}) appears in positions v1; : : : ; vr in o(T;wk), then the
projection of the sth dependent of wk in T is {[iv1 ; iv1+1 − 1]} ∪ {[iv2 ; iv2+1 − 1]} ∪
: : : ∪ {[ivr ; ivr+1 − 1]}.

In particular, it can be checked that i1 is always the index associated to the leftmost
node in bwkc, iq+1 the index associated to the rightmost node in bwkc plus 1, and for
each iv such that 1 < v ≤ q, the di�erences dv = (iv − i1) correspond to the positions in
the intermediate string a(T;wk) such that the dvth symbol in a(T;wk) di�ers from the
(dv + 1)th.

By using this property to reason about the projections of a dependency tree’s nodes,
we can show the following, more particular properties:

Property 2.

A node wk has gap degree g in a dependency structure T if, and only if, the comma
symbol (;) appears g times in o(T;wk).

(Corollary 1) The gap degree of a dependency structure T is the maximum value among
the number of commas in the order annotations of each of its nodes.

(Corollary 2) A dependency structure is projective if, and only if, none of the order
annotations associated to its nodes contain a comma.

Property 3. If a number s ∈ (N \ {0}) appears g + 1 times in an order annotation
o(T;wk), then the sth direct child of wk (in the ordering mentioned earlier) has gap
degree g, and therefore the dependency structure T has gap degree at least g.



Property 4. A dependency structure T is ill-nested if, and only if, it contains at least
one order annotation of the form : : : a : : : b : : : a : : : b : : :, for some a; b ∈ (N \ {0}). Oth-
erwise, T is well-nested.

These properties allow us to de�ne the sets of structures verifying well-nestedness
and/or bounded gap degree only in terms of their order annotations. Sets that can be
characterized in this way are said to be algebraically transparent (Kuhlmann, 2007).

3.2.3 Completeness

Proving completeness of the WG1 parser is proving that all correct �nal items are valid.
We will show this by proving the following, stronger claim:

Lemma 1. Let T be a valid partial dependency tree headed at a node wh. Then:

• (a) If bwhc = {wh} ∪ [i; j], then the item [i; j; h; �; �] containing T is valid under
this parser.

• (b) If bwhc = {wh} ∪ ([i; j] \ [l; r]), then the item [i; j; h; l; r] containing T is valid
under this parser.

It is clear that this lemma implies the completeness of the parser: a �nal item
[1; n; h; �; �] is correct only if it contains a tree rooted at wh with gap degree ≤ 1 and
projection [1; n]. Such a tree is in case (a) of Lemma 1, implying that the correct �nal
item [1; n; h; �; �] is valid. Therefore, this lemma implies that all correct �nal items are
valid, and therefore that that WG1 is complete.

3.2.4 Proof of Lemma 1

We will prove Lemma 1 by induction on #(bwhc). In order to do this, we will show that
Lemma 1 holds for valid trees T rooted at wh such that #(bwhc) = 1, and then we will
prove that if Lemma 1 holds for every valid tree T 0 such that #(bwhc) < N , then it also
holds for all trees T such that #(bwhc) = N .

Base case Let T



We know that p ≥ 1 because if #(bwhc) > 1, then wh must have at least one dependent.
We now consider two cases: p = 1 and p > 1. In the case where p = 1, consider the
subtree of T induced by wd1 . Since #(bwd1c) = N −1, we know by induction hypothesis
that the item corresponding to this tree is valid. This item is:

• [i; j; d1; �; �], if bwd1c is of the form {wd1} ∪ [i; j], with d1 ∈ [i; j]5. In this case,
applying a Link step to this item and the initial item [h; h; h; �; �] (which is valid
by de�nition), with the D-rule wd1 → wh (which must exist in order for T to be
valid); we obtain [i; j; h; �; �], which is the item corresponding to wh by Lemma 1.

• [i; j; d1; h; h], if bwd1c is of the form {wd1} ∪ ([i; j] \ {wh}). In this case, applying a
Link step to this item and the initial item [h; h; h; �; �] (which is valid by de�nition),
with the D-rule wd1 → wh (which must exist, as in the previous case); we obtain
[i; j; h; �; �]6, which is the item corresponding to wh by Lemma 1.

• [i; j; d1; l; r], if bwd1c is of the form {wd1}∪([i; j]\[l; r]). In this case, applying a Link
step to this item and the initial item [h; h; h; �; �] (which is valid by de�nition),
with the D-rule wd1 → wh; we obtain [i; j; h; l; r]; which is the item corresponding
to wh by Lemma 1.

With this, we have proven the induction step for the case where p = 1 (the head node
of our partial dependency tree has a single direct child). It now remains to prove it for
p ≥ 1 (the head node has more than one direct dependent).

In order to show this, let o(T;wh) be the order annotation associated to the head node
wh in tree T . By construction, O(T;wh) must be a string of symbols in the alphabet
{0}∪{1}∪: : :∪{p}∪{; }; containing a single appearance of the symbol 0. Additionally, by



• (vi) �; 0; �

Note that, by Property 2 of order annotations, the �rst case corresponds to a tree
where the head has gap degree 0, in the next two cases the head has gap degree 1, and
the last three are the cases where the gap degree of the head is 2: in these three latter
cases, the constraint that bwhc must be of the form {wh} ∪ ([i; j] \ [l; r]) for the tree T
to be valid implies that the symbol 0 representing the head in the annotation must be
surrounded by commas: if we have a gap degree 2 annotation of any other form (for
example �0; �; , for nonempty �); the projection of wh does not meet this constraint.
This can be seen by using Property 1 of order annotations to obtain this projection.

Taking these considerations into account, we will now divide the proof in di�erent
cases and subcases based on o(T;wh), starting with its �rst symbol:

1. If o(T;wh) begins with the symbol 1:

a) If there are no more appearances of the symbol 1 in o(T;wh):

Then we consider the following trees:

• T1: The tree obtained by taking the subtree induced by wd1 (which by
Property 1 must have a yield of the form [i; j], as the symbol 1 appears
only once in o(T;wh)), and adding the node wh and dependency wd1 → wh

to it.

• T2: The tree obtained by taking the union of subtrees induced by wd2 : : : wdp ,
and adding the node wh and dependencies wd2 → wh; : : : ; wdp → wh to
it.

And we divide this case into three further cases:

i. If o(T;wh) does not contain any comma: Then, by Property 17, the
projection of wh in T2 will be of the form [j + 1; k] ∪ {wh}. By applying
the induction hypothesis to T1 and T2, we know that the items [i; j; h; �; �]
and [j+1; k; h; �; �] are valid. Therefore, the item [i; k; h; �; �] is also valid
because it can be obtained from these two items by applying a Combine
Ungapped step. As in this case the projection of wh in T is [i; k] ∪ [h],
this item [i; k; h; �; �] is the item containing the tree T , and its validity
proves Lemma 1 in this particular subcase.

ii. If o(T;wh) contains at least one comma, and the second symbol in o(T;wh)
is a comma: Then o(T;wh) must be of the form (ii), (v) or (vi); and the
projection of wh in T2 will be of the form [i2; k] ∪ {wh}, for i2 > j + 1.
Therefore, we know by the induction hypothesis that the items [i; j; h; �; �]
(for T1) and [i2; k; h; �; �] (for T2) are valid, and by applying Combine
Opening Gap to these items, we obtain [i; k; h; j + 1; i2 − 1], which is the
item containing the tree T .

7In the remainder of the proof, we will always use Property 1 of order annotations to relate them to
projections; so we will not mention it explicitly in subsequent cases.
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iii. If o(T;wh) contains at least one comma, but the second symbol in o(T;wh)
is not a comma:

A. First, in the case that o(T;wh) contains exactly one comma, then
it is of the form 1�1; �2, where either �1 or �2 contains the symbol
0 and neither of them is empty. In this case, we can see that the
projection of wh in T2 is of the form {wh}∪ [j+ 1; l−1]∪ [r+ 1; k], so
by induction hypothesis the item [j + 1; k; h; l; r] is valid. We apply
Combine Keeping Gap Right to [i; j; h; �; �] (which is valid by T1 as
in the previous cases) and [j+1; k; h; l; r] to obtain [i; k; h; l; r], which
is the item containing T .

B. Second, in the case where o(T;wh) contains two commas, then it is
of the form 1�1; 0; �2 or 1�1; �2; 0. Then the projection of wh in T2

will again be of the form {wh} ∪ [j + 1; l − 1] ∪ [r + 1; k], so we can
follow the same reasoning as in the previous case to show that the
item [i; k; h; l; r] containing T is valid.

b) If there is a second appearance of symbol 1 in o(T;wh): Then o(T;wh) is of
the form 1�11�2. Due to the well-nestedness constraint, we know that there
is no symbol s ∈ {1}∪{2}∪ : : :∪{p} that appears both in �1 and in �2. This
allows us to consider the following trees:

• T1: The tree obtained by taking the subtree induced by wd1 (which must
have a yield of the form [i; l−1]∪ [r+1; j], as the symbol 1 appears twice
in o(T;wh)), and adding the node wh and dependency wd1 → wh to it.

• T2: The tree obtained by taking the union of subtrees induced by wdb1
: : : wdbq

,
where b1 : : : bq are the non-comma, non-zero symbols appearing in �1, and
adding the node wh and dependencies wdb1

→ wh; : : : ; wdbq
→ wh to it.

• T3: The tree obtained by taking the union of subtrees induced by wdc1
: : : wdcq

,
where c1 : : : cq are the non-comma, non-zero symbols appearing in �2, and
adding the node wh and dependencies wdc1

→ wh; : : : ; wdcq
→ wh to it.

Note that T2 or T



A. If T3 is empty (�2 is empty except for a possible 0 symbol), then we
are done, as [i; j; h; �; �] is already the item containing the tree T .

B. If �2 does not contain a comma, then the projection of wh in T3 is
of the form {wh} ∪ [j + 1; k], so by induction hypothesis the item
[j+ 1; k; h; �; �] is valid. By applying Combine Ungapped to this item
and �, we obtain [i; k; h; �; �], the item containing the tree T .

C. If �2 contains one or two commas, then the projection of wh in T3

is of the form {wh} ∪ [j + 1; l0 − 1] ∪ [r0 + 1;m], and by induction
hypothesis, [j + 1; k; h; l0; r0] is valid. By applying Combine Keeping
Gap Right to this item and �, we get that [i; k; h; l0; r0] is valid, and
this is the item containing the tree T in this case.

ii. If �1 contains a single symbol, and it is a comma: In this case, T2 is empty,
but we know that T3 must be nonempty (since p > 1) and it must either
have no commas, or be of the form �3; 0, corresponding to the expression
(v). In any of these cases, we know that the projection of wh in T3 will be
of the form {wh}∪ [j+1; k]. Therefore, applying the induction hypothesis
to T1 we know that the item [i; j; h; l; r] is valid, and with T3 we know
that [j+ 1; k; h; �; �] is also valid. By applying the Combine Keeping Gap
Left step to these two items, we obtain [i; k; h; l; r], the item containing
the tree T .

iii. If �1 is of the form \; �3", where �3 is not empty and does not contain
commas: then, by construction and by the well-nestedness constraint, we
know that the projection of wh in T2 is of the form {wh} ∪ [l0; r], with
l < l0 ≤ r; so the items [i; j; h; l; r] (for T1) and [l0; r; h; �; �] (for T2) are
valid. By applying Combine Shrinking Gap Right to these two items, we
obtain that � = [i; j; h; l; l0−1] is a valid item. Now, if �2 is empty, we are
done: � is the item containing the tree T . And if �2 is nonempty, then it
must either contain no commas, or be of the form �4; 0 (corresponding to
the expression (v)). In any of these cases, we know that the projection of
wh in T3 will be of the form {wh}∪ [j+1; k]. So, by induction hypothesis,
the item [j + 1; k; h; �; �] is valid; and by applying Combine Keeping Gap
Left to � and this item we obtain that [i; k; h; l; l0 − 1] is valid: this is the
item containing the tree T in this case.

iv. If �1 is of the form \�3;", where �3 is not empty and does not contain
commas, this case is symmetric with respect to the last one: in this case,
the projection of wh in T2 is of the form {wh}∪ [l; r0], with l ≤ r0 < r; and
the step Combine Shrinking Gap Left



contain commas: in this case, by construction and by the well-nestedness
constraint, we know that the projection of wh in T2 is of the form {wh}∪
[l; l0−1]∪ [r0+1; r], with l < l0 ≤ r0 < r. With this, this case is analogous
to the previous two cases: from T1 we know that the item [i; j; h; l; r] is
valid, and we combine it with the item [l; r; h; l0; r0] (from T2), in this case
using Combine Shrinking Gap Centre. With this, we obtain that the item
� = [i; j; h; l0; r0] is valid. If �2 is empty, this is the item containing the
tree T . If not, we make the same reasoning as in the two previous cases
to conclude that the item [j+1; k; h; �; �] is valid, and we combine it with
� by the Combine Keeping Gap Left step to obtain [i; k; h; l0; r0], the item
containing T .

vi. If �1 contains two commas: in this case, by construction of the valid tree
T , �1 must be of the form �3; 0; �4, where �3 and �4 may or may not be
empty. So we divide into subcases:

A. If �3 and �4 are both empty, we apply the same reasoning as in case
1-b-ii, except that in this case we know that �2 cannot contain any
commas.

B. If �3 is empty and �4 is nonempty, we apply the same reasoning as in
case 1-b-iii, except that in this case we know that �2 cannot contain
any commas.

C. If �3 is nonempty and �4 is empty, we apply the same reasoning as in
case 1-b-iv, except that in this case we know that �2 cannot contain
any commas.

D. If neither �3 nor �4 are empty, we apply the same reasoning as in
case 1-b-v, except that in this case we know that �2 cannot contain
any commas.

2. If o(T;wh) begins with the symbol 0:

a) If o(T;wh) begins with 01, we can apply the same reasonings as in case 1,
because the expressions for the projections do not change.

b) If o(T;wh) begins with 0 followed immediately by a comma, then we have an
annotation of the form (iv): 0; �; �. In this case, we can apply symmetric
reasoning considering the last symbol of o(T;wh) instead of the �rst (note
that the case �; �; 0 has already been proven as part of case 1, and all the
steps in the schema are symmetric).

As this covers all the possible cases of the order annotation o(T;wh), we have com-
pleted the proof of the induction step for Lemma 1, and this concludes the proof of
completeness for the WG1 parsing schema.

16



3.3 Computational complexity

The time complexity of WG1 is O(n7), as the step Combine Shrinking Gap Centre works
with 7 free string positions. This complexity with respect to the length of the input is as
expected for this set of structures, since Kuhlmann (2007) shows that they are equivalent
to LTAG, and the best existing parsers for this formalism also perform in O(n7) (Eisner
and Satta, 2000). Note that the Combine step which is the bottleneck only uses the 7
indexes, and not any other entities like D-rules, so its O(n7) complexity does not have
any additional factors due to grammar size or other variables. The space complexity of
the parser is O(n5), due to the 5 indexes in items.

It is possible to build a variant of this parser with time complexity O(n6), as with
parsers for unlexicalised TAG, if we work with unlexicalised D-rules specifying the pos-
sibility of dependencies between pairs of categories instead of pairs of words. In order to
do this, we expand the item set with unlexicalised items of the form [



An item [i; j; h; [(l1; r1); : : : ; (lg; rg)]] represents the set of all well-nested partial de-
pendency trees rooted at wh such that bw



As expected, the WG1 parser corresponds to WGk when we make k = 1. WGk works
in the same way as WG1, except for the fact that Combine steps can create items with
more than one gap.

4.2 Proof of correctness for WGk

The proof of correctness for WGk is analogous to that of WG1, but generalising the
de�nition of valid trees to a higher gap degree. A valid tree in WGk can be de�ned as
a partial dependency tree T , headed at wh, such that

• (1) bwhc is of the form {wh} ∪ ([i; j] \
Sg

p=1[lp; rp]), with 0 ≤ g ≤ k,

• (2) All the nodes in T have gap degree at most k except for wh, which can have
gap degree up to k + 1.

With this, we can de�ne correct items and correct �nal items analogously to their
de�nition in WG1.

Soundness is proven as in WG1: changing the constraints for nodes so that any node
can have gap degree up to k and the head of a correct tree can have gap degree k + 1,
the same reasonings can be applied to this case.

Completeness is proven by induction on #(bwhc), just as in WG1. The base case is
the same as in WG1, and for the induction step, we also consider the direct children
wd1 : : : wdp in wh. The case where p = 1 is proven by using Linker steps just as in WG1.
In the case for p ≥ 1, we also base our proof in the order annotation o(T;wh), but we
have to take into account that the set of possible annotations is larger when we allow
the gap degree to be greater than 1, so we must take into account more cases in this
part of the proof.

In particular, an order annotation o(T;wh) for a valid tree for WGk can contain up
to k + 1 commas and up to k + 1 appearances of each symbol in {1} ∪ : : : ∪ {p}; since
the head of such a tree can have gap degree at most k + 1 and the rest of its nodes
are limited to gap degree k. If the head has gap degree exactly k + 1 (i.e., if o(T;wh)
contains k



same way, the cases in which we used Combine Keeping Gap steps in the proof for WG1

are solved by using the general Combine Keeping Gap step in WGk.

4.3 Computational complexity

The WGk parser runs in time O(n5+2k): as in the case of WG1, the deduction step with
most free variables is Combine Shrinking Gap Centre, and in this case it has 5 + 2k
free indexes. Again, this complexity result is in line with what could be expected from
previous research in constituency parsing: Kuhlmann (2007) shows that the set of well-
nested dependency structures with gap degree at most k is closely related to coupled
context-free grammars in which the maximal rank of a nonterminal is k + 1; and the
constituency parser de�ned by Hotz and Pitsch (1996) for these grammars also adds an
n2 factor for each unit increment of k. Note that a small value of k should be enough
to cover the vast majority of the non-projective sentences found in natural language
treebanks. For example, the Prague Dependency Treebank contains no structures with
gap degree greater than 4. Therefore, a WG4 parser would be able to analyse all the
well-nested structures in this treebank, which represent 99:89% of the total. Increasing
k beyond 4 would not produce further improvements in coverage.

5 Parsing ill-nested structures

The WGk parser analyses dependency structures with bounded gap degree as long as they
are well-nested. This covers the vast majority of the structures that occur in natural-
language treebanks (Kuhlmann and Nivre, 2006), but there is still a signi�cant minority
of sentences that contain ill-nested structures. Unfortunately, the general problem of
parsing ill-nested structures is NP-complete, even when the gap degree is bounded: this
set of structures is closely related to LCFRS with bounded fan-out and unbounded pro-
duction length, and parsing in this formalism has been proven to be NP-complete (Satta,
1992). The reason for this high complexity is the problem of unrestricted crossing con�g-
urations, appearing when dependency subtrees are allowed to interleave in every possible
way. However, just as it has been noted that most non-projective structures appearing
in practice are only \slightly" non-projective (Nivre and Nilsson, 2005), we characterise
a sense in which the structures appearing in treebanks can be viewed as being only
\slightly" ill-nested. In this section, we generalise the algorithms WG1 and WGk to
parse a proper superset of the set of well-nested structures in polynomial time; and
give a characterisation of this new set of structures, which includes all the structures in
several dependency treebanks.

5.1 The MG1 and MGk parsers

The WGk parser for well-nested structures presented previously is based on a bottom-up
process, where Link steps are used to link completed subtrees to a head, and Combine
steps are used to join subtrees governed by a common head to obtain a larger structure.
As WGk is a parser for well-nested structures of gap degree up to k, its Combiner steps
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correspond to all the ways in which we can join two sets of sibling subtrees meeting these
constraints, and having a common head, into another. Therefore, this parser does not
use Combiner steps that produce interleaved subtrees, since these would generate items
corresponding to ill-nested structures.

We obtain a polynomial parser for a wider set of structures of gap degree at most
k, including some ill-nested ones, by having Combiner steps representing every way in
which two sets of sibling subtrees of gap degree at most k with a common head can be
joined into another, including those producing interleaved subtrees, like the steps for
gap degree 1 shown in Figure 1. Note that this does not mean that we can build every



Combine Interleaving:

[i; j; h; l; r]
[l; k; h; r + 1; j]

[i; k; h; �; �]
Combine Interleaving Gap C:

[i; j; h; l; r]
[l; k; h;m; j]
[i; k; h;m; r]

such that m < r + 1,

Combine Interleaving Gap L:

[i; j; h; l; r]
[l; k; h; r + 1; u]
[i; k; h; j + 1; u]

such that u > j,

Combine Interleaving Gap R:

[i; j; h; l; r]
[k;m; h; r + 1; j]
[i;m; h; l; k − 1]

such that k > l.

Figure 1: Additional steps to turn WG1 into MG1.

[ia1 ; iap+1 − 1; h; [(ia1+1; ia2 − 1); : : : ; (iap−1+1; iap − 1)]]
[ib1 ; ibq+1 − 1; h; [(ib1+1; ib2 − 1); : : : ; (ibq−1+1; ibq − 1)]]

[imin(a1;b1); imax(ap+1;bq+1) − 1; h; [(ig1 ; ig1+1 − 1); : : : ; (igr ; igr+1 − 1)]]

for each string of length n with a’s located at positions a1 : : : ap(1 ≤ a1 < : : : < ap ≤ n),
b’s at positions b1 : : : bq(1 ≤ b1 < : : : < bq ≤ n), and g’s at positions g1 : : : gr(2 ≤ g1 <
: : : < gr ≤ n− 1), such that 1 ≤ p ≤ k, 1 ≤ q ≤ k, 0 ≤ r ≤ k− 1, p+ q + r = n, and the
string does not contain more than one consecutive appearance of the same symbol.

Figure 2: Gen0 k 1. pp



In order to generalise this algorithm to mildly ill-nested structures for gap degree k,
we need to add a Combine step for every possible way of joining two structures of gap
degree at most k into another. This can be done in a systematic way by considering a set
of strings over an alphabet of three symbols: a and



dependent of wd in T . These properties of binarisations will be used throughout the
proof.

As for the previous algorithms, we will start the proof by de�ning the sets of valid
trees and correct items for this algorithm, which we will use to prove soundness and
completeness.

Let T be a partial dependency tree headed at a node wh. We will call such a tree a
valid tree for the algorithm WGk if it satis�es the following:

• (1) bwhc is of the form {wh} ∪ ([i; j] \
Sg

p=1[lp; rp]), with 0 ≤ g ≤ k,

• (2) There exists a binarisation of T such that all the nodes in it have gap degree
at most k except for its root node, which can have gap degree up to k + 1.

Note that, since by property (ii) a binarisation cannot decrease the gap degree of a
tree, condition (2) implies that all the nodes in T must have gap degree at most k except
for wh, which can have gap degree at most k + 1.

That is, the de�nition of a valid tree in this case is as in WGk, but changing the well-
nestedness constraint to the weaker requirement of having a binarisation of gap degree
k (except for the particular case of the root node, which can have gap degree k+ 1). As
in WG1 and WGk, we will say that an item is correct if it contains some valid tree T
licensed by a set of D-rules G, and throughout the proof we will suppose that all items
are normalised.

Given an input string w1 : : : wn, a correct �nal item for MGk will have the form
[1; n; h; []], and contain at least one valid tree T rooted at a head wh and with bwhc =
[1; n], which is a complete parse for the input. Since in a tree contained in an item of
this form the projection of the head cannot have any gaps and thus the head has gap
degree 0, we have that there exists a binarisation of T such that every one of its nodes,
including the head, has gap degree at most k. Therefore, T is mildly ill-nested for gap
degree k and, more generally, �nal items in MGk only contain mildly ill-nested trees for
gap degree k, as expected.



and linking the head of the antecedent tree to it, for Link steps, and by considering the
union of the trees corresponding to the antecedents, for Combine steps.

We can show that the resulting tree is licensed by G and that it satis�es the condition
(1) of a valid tree in the same way as we did in WG1 and WGk. So, to prove soundness,
it only remains to show that the resulting tree has a binarisation verifying the gap degree
constraint (2).

To prove this, we show that a binarisation satisfying (2) of the tree corresponding
to the consequent item can be constructed from the corresponding binarisations of the
antecedent items. We will prove the stronger claim that such a binarisation can be
constructed, with the additional constraints that: (3) its root node must be labelled
(therefore, by one of the properties of binarisations, its label corresponds to the head
node of the original tree) and can have at most one direct child, and that (4) the
binarisation can only contain more than one node labelled wh if the item is of the form
[i; j; h; [(l1; r1) : : : (lg; rg)]] such that wh ∈ ([i; j] \

Sg
p=1[lp; rp]).

In the case of each Link step adding a link wd → wh, such a binarisation can be
constructed by taking the binarisation Ba corresponding to the non-initial antecedent
item, and linking its head to a new node labelled w





Proposition 1. Let T be a partial dependency tree headed at node wh, and valid for
MGk. Then, if bwhc = {wh}∪([i; j]\

Sg
p=1[lp; rp]), for p ≤ k, the item [i; j; h; (l1; r1); : : : ; (lg; rg)]

containing T is valid under this parser.

It is clear that this proposition implies the completeness of the parser: a �nal item
[1; n; h; []] is correct only if it contains a tree rooted at wh, valid for MGk and with
projection bwhc = [1; n]. By Proposition 1, having such a tree implies that the correct
�nal item [1; n; h; []] is valid. Therefore, this lemma implies that all correct �nal items
are valid, and thus that MGk is complete.

Since valid trees for the MGk parser must be mildly ill-nested for gap degree k, every
valid tree must have at least one binarisation where every node has gap degree ≤ k
except possibly the head, that can have gap degree k + 1. We will call a binarisation
satisfying this property a well-formed binarisation for MGk.

Using this, we can prove Proposition 1 if we prove the following lemma:

Lemma 2. Let B be a well-formed binarisation of a partial dependency tree T , headed
at node wh and valid for MGk. If the projection of wh in T is bwhcT = bwhcB =
{wh} ∪ ([i; j] \

Sg
p=1[lp; rp]), for p ≤ k, the item [i; j; h; (l1; r1); : : : ; (lg; rg)] containing T

is valid under this parser.

5.3.3 Proof of Lemma 2

We will prove this lemma by induction on the number of nodes of B (denoted #B).
In order to do this, we will show that Lemma 2 holds for well-formed binarisations B
of trees T rooted at wh such that #B = 1, and then we will prove that if Lemma 2
holds for every well-formed binarisation B0 such that #B0 < N , then it also holds for
binarisations B such that #B = N .

Base case Let B be a well-formed binarisation of a partial dependency tree T , rooted
at a node wh and valid for MGk, and such that #B = 1. In this case, since B has only
one node, it must be a binarisation of the trivial dependency tree consisting of the single
node wh. Thus, Lemma 2 trivially holds because the initial item [h; h; h; []] contains this
tree, and initial items are valid by de�nition.

Induction step Let B be a well-formed binarisation of some partial dependency tree T ,
headed at node wh and valid for MGk, such that bwhcT = {wh} ∪ ([i; j] \

Sg
p=1[lp; rp])),

and #B = N ; and suppose that Lemma 2 holds for every well-formed binarisation B0

of a tree T 0 such that #B0 < N . We will prove that Lemma 2 holds for B.
In order to do this, we consider di�erent cases depending on the number and type of

children of the head node labelled wh in B:

• If wh has a single child in B, and it is a node labelled wd (wd 6= wh): then,
the subtree B0 induced by wd in B is a binarisation of some tree T 0, such that
bwdcT ′ = bwhcT \{wh} (note that no nodes labelled wh can appear in B0, since wh

cannot be a dependent of wd). As #B0 < N and B0 is well-formed because all its
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nodes are non-head nodes of B; by applying the induction hypothesis, we obtain
that the item � = [i; j; d; (l1; r1); : : : ; (lg; rg)] (which contains T 0 by construction)
is valid. The item [i; j; h; (l1; r1); : : : ; (lg; rg)] containing T can be obtained from �
and the initial item [h; h; h; ()] by a Link step, and therefore it is valid, so we have
proven Lemma 2 in this case.

• If wh has a single child in B, and it is an unlabelled node: call this unlabelled
node n. Then, the subtree B0 obtained from removing n from B and linking its
children directly to wh is a binarisation of the same tree as B. We know that B0

is well-formed because its non-head nodes have the same projections as in B and
therefore must have gap degree ≤ k and, as B is well-formed, n has gap degree
≤ k, so the subtree created by linking the children of n to wh can have gap degree
at most k+ 1, and it only will have degree k+ 1 if bwhcB′ \ {wh} has k gaps. As B
and B0 are well-formed binarisations of the same tree, if Lemma 2 holds for B0, it
also must hold for B. As we know that #B0 < N (since it contains one less node
than B), Lemma 2 holds for B0 by the induction hypothesis, so this case is proven.

• If wh has a single child in B, and it is a node labelled wh: then, the subtree B0

induced by this single child node is a binarisation of the same tree as B. We know
that B0 is well-formed because its nodes have the same projections as they had in
B, and therefore they must all have gap degree ≤ k by the well-formedness of B.
Reasoning as in the previous case, since B and B0 are binarisations of the same
tree and we know that Lemma 2 holds for B0 for the induction hypothesis, this
implies that it holds for B as well.

• If wh has two children in B: in this case, regardless of whether the direct children
of wh are labelled or unlabelled nodes, we call them c1 and c2 and consider two
partial dependency trees B01 and B02:

{ B01 is the tree obtained by taking the subtree induced by c1 and linking its
head c1 to wh,

{ B02 is the tree obtained by taking the subtree induced by c2 and linking its
head c2 to wh.

We know that all the nodes in B01 and B02, except for the head, must have gap
degree ≤ k because their projection in B01 and B02 is the same as their projection
in B



Language

Structures

Total
Nonprojective

Total
By gap degree By nestedness

Gap
deg. 1

Gap
deg. 2

Gap
deg. 3

Gap
d. > 3

Well-
Nested

Mildly
Ill-Nest.

Strongly
Ill-Nest.

Arabic 2995 205 189 13 2 1 204 1 0
Czech 87889 20353 19989 359 4 1 20257 96 0

Danish 5430 864 854 10 0 0 856 8 0
Dutch 13349 4865 4425 427 13 0 4850 15 0
Latin 3473 1743 1543 188 10 2 1552 191 0

Portuguese 9071 1718 1302 351 51 14 1711 7 0
Slovene 1998 555 443 81 21 10 550 5 0
Swedish 11042 1079 1048 19 7 5 1008 71 0
Turkish 5583 685 656 29 0 0 665 20 0

Table 1: Counts of dependency trees classi�ed by gap degree, and mild and strong ill-nestedness
(for their gap degree); appearing in treebanks for Arabic (Haji�c et al., 2004), Czech
(Haji�c et al., 2006), Danish (Kromann, 2003), Dutch (van der Beek et al., 2002), Latin
(Bamman and Crane, 2006), Portuguese (Afonso et al., 2002), Slovene (D�zeroski et al.,
2006), Swedish (Nilsson et al., 2005) and Turkish (Oazer et al., 2003; Atalay et al.,
2003).

for g1; g2 ≤ k+ 1. We also know that the union of the projections of wh in T 01 and
T 02 is the union of gc ≤ k + 1 intervals, and is the same as the projection of wh

in T . Therefore, as the indexes of the Combiner steps in MGk



Figure 3: One of the smallest strongly ill-nested structures. This dependency structure has gap
degree 1, but is only mildly ill-nested for gap degree ≥ 2.

Even if a structure T is strongly ill-nested for a given gap degree, there is always some
m ∈ N such that T
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